Muscular dystrophy associated mutations in caveolin-1 induce neurotransmission and locomotion defects in Caenorhabditis elegans.

Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
Invertebrate Neuroscience (Impact Factor: 1.19). 10/2007; 7(3):157-64. DOI: 10.1007/s10158-007-0051-5
Source: PubMed

ABSTRACT Mutations in human caveolin-3 are known to underlie a range of myopathies. The cav-1 gene of Caenorhabditis elegans is a homologue of human caveolin-3 and is expressed in both neurons and body wall muscles. Within the body wall muscle CAV-1 localises adjacent to neurons, most likely at the neuromuscular junction (NMJ). Using fluorescently tagged CAV-1 and pre- and post-synaptic markers we demonstrate that CAV-1 co-localises with UNC-63, a post-synaptic marker, but not with several pre-synaptic markers. To establish a model for human muscular dystrophies caused by dominant-negative mutations in caveolin-3 we created transgenic animals carrying versions of cav-1 with homologous mutations. These animals had increased sensitivity to levamisole, suggesting a role for cav-1 at the NMJ. Animals carrying a deletion in cav-1 show a similar sensitivity. Sensitivity to levamisole and locomotion were also perturbed in animals carrying a dominant-negative cav-1 and a mutation in dynamin, which is a protein known to interact with caveolins. Thus, indicating an interaction between CAV-1 and dynamin at the NMJ and/or in neurons.


Available from: Scott Parker, Nov 13, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Caveolae are an abundant feature of mammalian cells. Integral membrane proteins called caveolins drive the formation of caveolae but the precise mechanisms underlying caveola formation, and the origin of caveolae and caveolins during evolution, are unknown. Systematic evolutionary analysis shows conservation of genes encoding caveolins in metazoans. We provide evidence for extensive and ancient, local and genomic gene duplication, and classify distinct caveolin gene families. Vertebrate caveolin-1 and caveolin-3 isoforms, as well as an invertebrate (Apis mellifera, honeybee) caveolin, all form morphologically identical caveolae in caveolin-1-null mouse cells, demonstrating that caveola formation is a conserved feature of evolutionarily distant caveolins. However, coexpression of flotillin-1 and flotillin-2 did not cause caveola biogenesis in this system. In contrast to the other tested caveolins, C. elegans caveolin is efficiently transported to the plasma membrane but does not generate caveolae, providing evidence of diversity of function in the caveolin gene family. Using C. elegans caveolin as a template to generate hybrid caveolin constructs we now define domains of caveolin required for caveolae biogenesis. These studies lead to a model for caveola formation and novel insights into the evolution of caveolin function.
    Journal of Cell Science 07/2008; 121(Pt 12):2075-86. DOI:10.1242/jcs.024588 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Tissue-specific RNA plasticity broadly impacts the development, tissue identity and adaptability of all organisms, but changes in composition, expression levels and its impact on gene regulation in different somatic tissues are largely unknown. Here we developed a new method, polyA-tagging and sequencing (PAT-Seq) to isolate high-quality tissue-specific mRNA from C. elegans intestine, pharynx, and body muscle tissues and study changes in their tissue-specific transcriptomes, and 3¿UTRomes.ResultsWe have identified thousands of novel genes and isoforms differentially expressed between these three tissues. The intestine transcriptome is expansive, expressing over 30% of C. elegans mRNAs, while muscle transcriptomes are smaller but contain characteristic unique gene signatures. Active promoter regions in all three tissues reveal both known and novel enriched tissue-specific elements, along with putative transcription factors, suggesting novel tissue-specific modes of transcription initiation. We have precisely mapped ~20,000 tissue-specific polyadenylation sites, and discovered that ~30% of transcripts in somatic cells use alternative polyadenylation in a tissue-specific manner, with their 3¿UTR isoforms significantly enriched with microRNA targets.ConclusionsPAT-Seq allowed for the first time to directly study tissue specific gene expression changes in an in vivo setting and compare these changes between three somatic tissues from the same organism at single-base resolution within the same experiment. We pinpoint precise tissue-specific transcriptome rearrangements and for the first time link tissue-specific alternative polyadenylation to miRNA regulation, suggesting novel and unexplored tissue-specific post-transcriptional regulatory networks in somatic cells.
    BMC Biology 01/2015; 13(1):4. DOI:10.1186/s12915-015-0116-6 · 7.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibodies are critical tools in many avenues of biological research. Though antibodies can be produced in the research laboratory setting, most research labs working with vertebrates avail themselves of the wide array of commercially available reagents. By contrast, few such reagents are available for work with model organisms. We report the production of monoclonal antibodies directed against a wide range of proteins that label specific subcellular and cellular components, and macromolecular complexes. Antibodies were made to synaptobrevin (SNB-1), a component of synaptic vesicles; to Rim (UNC-10), a protein localized to synaptic active zones; to transforming acidic coiled-coil protein (TAC-1), a component of centrosomes; to CENP-C (HCP-4), which in worms labels the entire length of their holocentric chromosomes; to ORC2 (ORC-2), a subunit of the DNA origin replication complex; to the nucleolar phosphoprotein NOPP140 (DAO-5); to the nuclear envelope protein lamin (LMN-1); to EHD1 (RME-1) a marker for recycling endosomes; to caveolin (CAV-1), a marker for caveolae; to the cytochrome P450 (CYP-33E1), a resident of the endoplasmic reticulum; to beta-1,3-glucuronyltransferase (SQV-8) that labels the Golgi; to a chaperonin (HSP-60) targeted to mitochondria; to LAMP (LMP-1), a resident protein of lysosomes; to the alpha subunit of the 20S subcomplex (PAS-7) of the 26S proteasome; to dynamin (DYN-1) and to the alpha-subunit of the adaptor complex 2 (APA-2) as markers for sites of clathrin-mediated endocytosis; to the MAGUK, protein disks large (DLG-1) and cadherin (HMR-1), both of which label adherens junctions; to a cytoskeletal linker of the ezrin-radixin-moesin family (ERM-1), which localized to apical membranes; to an ERBIN family protein (LET-413) which localizes to the basolateral membrane of epithelial cells and to an adhesion molecule (SAX-7) which localizes to the plasma membrane at cell-cell contacts. In addition to working in whole mount immunocytochemistry, most of these antibodies work on western blots and thus should be of use for biochemical fractionation studies. We have produced a set of monoclonal antibodies to subcellular components of the nematode C. elegans for the research community. These reagents are being made available through the Developmental Studies Hybridoma Bank (DSHB).
    PLoS ONE 04/2010; 5(4):e10161. DOI:10.1371/journal.pone.0010161 · 3.53 Impact Factor