Article

Muscular dystrophy associated mutations in caveolin-1 induce neurotransmission and locomotion defects in Caenorhabditis elegans.

Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
Invertebrate Neuroscience (Impact Factor: 1.13). 10/2007; 7(3):157-64. DOI: 10.1007/s10158-007-0051-5
Source: PubMed

ABSTRACT Mutations in human caveolin-3 are known to underlie a range of myopathies. The cav-1 gene of Caenorhabditis elegans is a homologue of human caveolin-3 and is expressed in both neurons and body wall muscles. Within the body wall muscle CAV-1 localises adjacent to neurons, most likely at the neuromuscular junction (NMJ). Using fluorescently tagged CAV-1 and pre- and post-synaptic markers we demonstrate that CAV-1 co-localises with UNC-63, a post-synaptic marker, but not with several pre-synaptic markers. To establish a model for human muscular dystrophies caused by dominant-negative mutations in caveolin-3 we created transgenic animals carrying versions of cav-1 with homologous mutations. These animals had increased sensitivity to levamisole, suggesting a role for cav-1 at the NMJ. Animals carrying a deletion in cav-1 show a similar sensitivity. Sensitivity to levamisole and locomotion were also perturbed in animals carrying a dominant-negative cav-1 and a mutation in dynamin, which is a protein known to interact with caveolins. Thus, indicating an interaction between CAV-1 and dynamin at the NMJ and/or in neurons.

1 Bookmark
 · 
53 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Caenorhabditis elegans has a complete annotated genome sequence that is augmented by increasing quantities of data from high-throughput postgenomic analyses. This has led to an increasing need to identify the biological functions of specific genes using reverse genetics, i.e., moving from gene to phenotype. Fundamental to this aim is the ability to alter the structure of particular genes by means that are not accessible to classical genetic strategies. Thus, one dream of C. elegans researchers is to establish a toolkit for the controlled manipulation of any loci within the genome. Although C. elegans is amenable to a wide variety of genetic and molecular manipulations, controlled manipulation of endogenous genes by, for example, gene targeting has proved elusive until relatively recently. In this review, we describe and discuss the different methods available for the inactivation and modification of endogenous loci with a focus on strategies that permit some measure of control in this process. We describe methods that use random mutagenesis to isolate mutations in specific genes. We then focus on techniques that allow controlled manipulation of the genome: gene modification by transposon mobilisation, gene knock-out mediated by zinc-finger nucleases, and gene targeting by biolistic transformation.
    The Scientific World Journal 01/2011; 11:1394-410. · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibodies are critical tools in many avenues of biological research. Though antibodies can be produced in the research laboratory setting, most research labs working with vertebrates avail themselves of the wide array of commercially available reagents. By contrast, few such reagents are available for work with model organisms. We report the production of monoclonal antibodies directed against a wide range of proteins that label specific subcellular and cellular components, and macromolecular complexes. Antibodies were made to synaptobrevin (SNB-1), a component of synaptic vesicles; to Rim (UNC-10), a protein localized to synaptic active zones; to transforming acidic coiled-coil protein (TAC-1), a component of centrosomes; to CENP-C (HCP-4), which in worms labels the entire length of their holocentric chromosomes; to ORC2 (ORC-2), a subunit of the DNA origin replication complex; to the nucleolar phosphoprotein NOPP140 (DAO-5); to the nuclear envelope protein lamin (LMN-1); to EHD1 (RME-1) a marker for recycling endosomes; to caveolin (CAV-1), a marker for caveolae; to the cytochrome P450 (CYP-33E1), a resident of the endoplasmic reticulum; to beta-1,3-glucuronyltransferase (SQV-8) that labels the Golgi; to a chaperonin (HSP-60) targeted to mitochondria; to LAMP (LMP-1), a resident protein of lysosomes; to the alpha subunit of the 20S subcomplex (PAS-7) of the 26S proteasome; to dynamin (DYN-1) and to the alpha-subunit of the adaptor complex 2 (APA-2) as markers for sites of clathrin-mediated endocytosis; to the MAGUK, protein disks large (DLG-1) and cadherin (HMR-1), both of which label adherens junctions; to a cytoskeletal linker of the ezrin-radixin-moesin family (ERM-1), which localized to apical membranes; to an ERBIN family protein (LET-413) which localizes to the basolateral membrane of epithelial cells and to an adhesion molecule (SAX-7) which localizes to the plasma membrane at cell-cell contacts. In addition to working in whole mount immunocytochemistry, most of these antibodies work on western blots and thus should be of use for biochemical fractionation studies. We have produced a set of monoclonal antibodies to subcellular components of the nematode C. elegans for the research community. These reagents are being made available through the Developmental Studies Hybridoma Bank (DSHB).
    PLoS ONE 01/2010; 5(4):e10161. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Caveolae are ampullate (flask-shaped) invaginations that are abundant in the plasma membrane of many mammalian cell types. Although caveolae are implicated in a wide range of processes including endothelial transcytosis, lipid homeostasis and cellular signalling, a detailed molecular picture of many aspects of their function has been elusive. Until recently, the only extensively characterised protein components of caveolae were the caveolins. Recently, data from several laboratories have demonstrated that a family of four related proteins, termed cavins 1-4, plays key roles in caveolar biogenesis and function. Salient properties of the cavin family include their propensity to form complexes with each other and their different but overlapping tissue distribution. This review summarises recent data on the cavins, and sets them in the context of open questions on the construction and function of caveolae. The discovery of cavins implies that caveolae might have unexpectedly diverse structural properties, in accord with the wide range of functions attributed to these 'little caves'.
    Trends in cell biology 02/2010; 20(4):177-86. · 12.12 Impact Factor

Full-text (3 Sources)

Download
3 Downloads
Available from
Nov 13, 2014