Article

Spatial and Temporal Dynamics of T Cell Receptor Signaling with a Photoactivatable Agonist

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Immunity (Impact Factor: 19.75). 08/2007; 27(1):76-88. DOI: 10.1016/j.immuni.2007.05.017
Source: PubMed

ABSTRACT The precise timing of signals downstream of the T cell receptor (TCR) is poorly understood. To address this problem, we prepared major histocompatibility complexes containing an antigenic peptide that is biologically inert until exposed to ultraviolet (UV) light. UV irradiation of these complexes in contact with cognate T cells enabled the high-resolution temporal analysis of signaling. Phosphorylation of the LAT adaptor molecule was observed in 4 s, and diacylglycerol production and calcium flux was observed in 6-7 s. TCR activation also induced cytoskeletal polarization within 2 min. Antibody blockade of CD4 reduced the intensity of LAT phosphorylation and the speed of calcium flux. Furthermore, strong desensitization of diacylglycerol production, but not LAT phosphorylation, occurred shortly after TCR activation, suggesting that different molecular events play distinct signal-processing roles. These results establish the speed and localization of early signaling steps, and have important implications regarding the overall structure of the network.

Download full-text

Full-text

Available from: Joycelyn M. Faraj, Jan 29, 2015
0 Followers
 · 
109 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a single-molecule imaging technique that uses quantum-dot-labeled peptide-major histocompatibility complex (pMHC) ligands to study CD4(+) T cell functional sensitivity. We found that naive T cells, T cell blasts, and memory T cells could all be triggered by a single pMHC to secrete tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2) cytokines with a rate of ∼1,000, ∼10,000, and ∼10,000 molecules/min, respectively, and that additional pMHCs did not augment secretion, indicating a digital response pattern. We also found that a single pMHC localized to the immunological synapse induced the slow formation of a long-lasting T cell receptor (TCR) cluster, consistent with a serial engagement mechanism. These data show that scaling up CD4(+) T cell cytokine responses involves increasingly efficient T cell recruitment rather than greater cytokine production per cell.
    Immunity 10/2013; DOI:10.1016/j.immuni.2013.08.036 · 19.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest The immune system identifies and combats foreign objects, including pathogens, in the body. T cells are key components of the immune system, and each has a unique variant of a signalling complex known as the T cell receptor on its surface. T cells scan the surfaces of other cells in search of antigens, which are peptides (fragments of proteins) that derive from foreign pathogens such as viruses. Successful recognition of a foreign peptide leads to an immune response that, in most cases, ultimately rids the body of the pathogen. Most importantly, however, the immune system must be able to discriminate between peptides that are produced naturally in the body (‘self’ peptides) and foreign or ‘non-self’ peptides. This is challenging because self peptides may have similar structures to non-self peptides and are often much more abundant. Many models have been proposed to explain how T cells are able to detect just a few molecules of foreign peptide. According to some hypotheses the T cell receptors get together in clusters to function cooperatively; alternatively, it has been suggested that rapid binding of a foreign peptide to multiple T cell receptors sequentially can build up a strong signal. However, none of these phenomena have been directly observed. O'Donoghue et al. now image the interactions between T cell receptors and peptides bound to molecules called major histocompatibility complexes (MHCs), and show that T cell activation can occur when a single foreign peptide binds to a single receptor. These interactions are long-lived and ultimately result in the recruitment of ZAP70, which has an important role in the activation of T cells, to the complex formed by the T cell, the peptide and the MHC molecule. Therefore, any amplification of the activating signal transmitted by non-self peptides occurs following receptor binding, in contrast to previous models. DOI: http://dx.doi.org/10.7554/eLife.00778.002
    eLife Sciences 07/2013; 2:e00778. DOI:10.7554/eLife.00778 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Engagement of the T cell antigen receptor (TCR) triggers signaling pathways that lead to T cell selection, differentiation and clonal expansion. Superimposed onto the biochemical network is a spatial organization that describes individual receptor molecules, dimers, oligomers and higher order structures. Here we discuss recent findings and new concepts that may regulate TCR organization in naïve and memory T cells. A key question that has emerged is how antigen-TCR interactions encode spatial information to direct T cell activation and differentiation. Single molecule super-resolution microscopy may become an important tool in decoding receptor organization at the molecular level.
    Frontiers in Immunology 11/2012; 3:352. DOI:10.3389/fimmu.2012.00352