Article

The OmpA-Like Protein Loa22 Is Essential for Leptospiral Virulence

Children's Hospital Boston, United States of America
PLoS Pathogens (Impact Factor: 8.06). 08/2007; 3(7):e97. DOI: 10.1371/journal.ppat.0030097
Source: PubMed

ABSTRACT Author Summary

The spirochetes, which include medically important pathogens such as the causative agents of Lyme disease, syphilis, and leptospirosis, constitute an evolutionarily unique group of bacteria. Leptospirosis is a zoonotic disease that causes a high rate of mortality and morbidity in humans and animals throughout the world each year. The year 2007 marks the centenary of the discovery of the causative agent of leptospirosis, Leptospira interrogans. Until now, the genetic obstacles posed by leptospires (principally, the difficulties in generating targeted mutants) have hampered the identification of virulence genes. In this study, we describe an avirulent mutant in a pathogenic Leptospira that was obtained via disruption of loa22, a gene that encodes an outer membrane protein containing an OmpA domain. This mutation resulted in an avirulent mutant in the guinea pig model, and reintroduction of loa22 into the mutant restored Leptospira's ability to kill guinea pigs. Our results therefore indicate that loa22 is a virulence determinant that is, to our knowledge, the first identified for this pathogen.

Full-text

Available from: Albert I Ko, Sep 24, 2014
0 Followers
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathogenic spirochetes of the genus Leptospira are the causative agents of leptospirosis, a zoonotic infection that occurs globally. The bacteria colonize the renal proximal tubules of many animals and are shed in the urine. Contact with the urine, or with water contaminated with the urine of infected animals can cause infection of new host animals, including humans. Mechanisms of colonization of the proximal tubule and other tissues are not known, but specific interactions between bacterial adhesins and host substrates are likely to be critical in this process. Several extracellular matrix (ECM) adhesins have been previously identified, but more recently, it has been shown that Leptospira bind more efficiently to cells than ECM. In this work, recombinant forms of five putative Leptospira ECM adhesins, namely LipL32, Loa22, OmpL1, p31/LipL45, and LenA were evaluated for binding to cells as well as an expanded variety of ECM components. Reproducible and significant adhesin activity was demonstrated only for OmpL1, which bound to both mammalian cell lines tested and to glycosaminoglycans (GAGs). While determination of biologically significant bacterial adhesion activity will require generation of site-directed mutant strains, our results suggest that OmpL1 is a strong candidate for future evaluation regarding the roles of the adhesin activity of the protein during L. interrogans infection.
    PLoS Neglected Tropical Diseases 04/2015; 9(4):e0003712. DOI:10.1371/journal.pntd.0003712 · 4.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genome of pathogenic Leptospira interrogans contains two chromosomes. Plasmids and prophages are known to play specific roles in gene transfer in bacteria and can potentially serve as efficient genetic tools in these organisms. Although plasmids and prophage remnants have recently been reported in Leptospira species, their characteristics and potential applications in leptospiral genetic transformation systems have not been fully evaluated. Three extrachromosomal replicons designated lcp1 (65,732 bp), lcp2 (56,757 bp), and lcp3 (54,986 bp) in the L. interrogans serovar Linhai strain 56609 were identified through whole genome sequencing. All three replicons were stable outside of the bacterial chromosomes. Phage particles were observed in the culture supernatant of 56609 after mitomycin C induction, and lcp3, which contained phage-related genes, was considered to be an inducible prophage. L. interrogans-Escherichia coli shuttle vectors, constructed with the predicted replication elements of single rep or rep combined with parAB loci from the three plasmids were shown to successfully transform into both saprophytic and pathogenic Leptospira species, suggesting an essential function for rep genes in supporting auto-replication of the plasmids. Additionally, a wide distribution of homologs of the three rep genes was identified in L. interrogans isolates, and correlation tests showed that the transformability of the shuttle vectors in L. interrogans isolates depended, to certain extent, on genetic compatibility between the rep sequences of both plasmid and host. Three extrachromosomal replicons co-exist in L. interrogans, one of which we consider to be an inducible prophage. The vectors constructed with the rep genes of the three replicons successfully transformed into saprophytic and pathogenic Leptospira species alike, but this was partly dependent on genetic compatibility between the rep sequences of both plasmid and host.
    BMC Genomics 12/2015; 16(1). DOI:10.1186/s12864-015-1321-y · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animal leptospirosis is one of the most common zoonotic diseases in the United States and around the world. In a previous study, we applied four recombinant antigens, rLipL21, rLoa22, rLipL32 and rLigACon4-8 of Leptospira interrogans (L. interrogans) for the serological diagnosis of equine leptospirosis (Ye et al, Serodiagnosis of equine leptospirosis by ELISA using four recombinant protein markers, Clin. Vaccine. Immunol. 21:478-483). In this study, the same four recombinant antigens were evaluated for their potential to diagnose canine leptospirosis by ELISA. A total of 305 canine sera that were Leptospira microscopic agglutination test (MAT)-negative (n = 102) and MAT-positive (n = 203) to 5 serovars (Pomona, Grippotyphosa, Icterohaemorrhagiae, Canicola and Hardjo) were tested. When individual recombinant antigens were used, the sensitivity and specificity of ELISA were 97.5% and 84.3% for rLigACon4-8; 89.7% and 81.4% for rLoa22; 92.6% and 84.3% for rLipL32 and 99.5% and 84.3% for rLipL21, respectively compared to the MAT. The sensitivity and specificity of ELISA were, 92.6% and 91.2% for rLigACon4-8 and rLipL32, 97.5% and 84.3% for rLigACon4-8 and rLipL21, 89.7% and 87.3% for rLigACon4-8 and rLoa22, 89.7% and 87.3% to rLipL21 and rLoa22, 92.6% and 91.2% for rLipL21 and rLipL32 and 89.2% and 94.1% for rLoa22 and rLipL32 when one of the two antigens was test positive. The use of all four antigens in the ELISA assay was found to be sensitive and specific, easy to perform, and agreed with the results of the standard Leptospira Microscopic Agglutination test (MAT) for the diagnosis of canine leptospirosis.
    PLoS ONE 12/2014; 9(12):e111367. DOI:10.1371/journal.pone.0111367 · 3.53 Impact Factor