Article

Phase and mixing behavior in two-component lipid bilayers: A molecular dynamics study in DLPC/DSPC mixtures

Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, California, United States
The Journal of Physical Chemistry B (Impact Factor: 3.38). 09/2007; 111(32):9504-12. DOI: 10.1021/jp072101q
Source: PubMed

ABSTRACT Phase and mixing behavior of dilauroylphosphatidylcholine (DLPC)/distearoylphosphatidylcholine (DSPC) lipid mixtures are studied by molecular dynamics simulations with use of a coarse-grained model over a wide range of concentrations. The results reveal that phase transformations from the fluid to the gel state can be followed over a microsecond time scale. The changes in structure suggest regions of phase coexistence allowing us to outline the entire phase diagram for this lipid mixture using a molecular based model. We show that simulations yield good agreement with the experimental phase diagram. We also address the effect of macroscopic phase separation on the determination of the transition temperature, different leaflet composition, and finite size effects. This study may have implications on lateral membrane organization and the associated processes dependent on these membrane regions on different time and length scales.

0 Followers
 · 
69 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here in silico lipid membranes are described providing a structural background of the organization of the lipid components of membranes and aiding further biological or biophysical studies. An all-atom molecular dynamics simulations has been performed to investigate structural and dynamical properties of two fully hydrated gel-phase bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phospho-ethanolamine (DPPE) bilayers at 303 K. The respective starting configuration of lipids in the simulation bilayer unit cells were taken on the basis of scattering data. In both simulations, we found overall reasonably good agreement with the available experimental data (area per lipid, phosphorus–phosphorus distance). The distribution of the water/counterions at the membrane interface, interactions/orientations of lipid headgroups, and hydrocarbon chain organization were extensively studied in terms of pair distribution functions between main structural components of the system. Intra/intermolecular hydrogen bond formation was discussed in detail. The water orientation at the lipid membrane interface was explored thoroughly in terms of dipole moment as a function of the water molecule positions along the membrane, where we found that the counterions changed the orientation of the water at the interface. Special attention has been devoted to the distribution of the sodium counterions around the DPPG headgroup. We found preferential binding of Na+ ions to the phosphate oxygen species.
    Journal of Molecular Structure 03/2009; 921:38-50. DOI:10.1016/j.molstruc.2008.12.025 · 1.60 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Delineation and analysis of lateral clustering of lipids in model bilayers is an important step toward understanding of the physical processes underlying formation of lipid domains and rafts in cell membranes. Computer modeling methods represent a powerful tool to address the problem since they can detect clusters of only few lipid molecules - this issue still resists easy characterization with modern experimental techniques. In this work, we propose a computational method to detect and analyze parts of membrane with different packing densities and hydrogen bonding patterns. A series of one- and two-component fluid systems containing lipids with the same polar heads and different acyl chains, dioleoylphosphatidylcholine (18:1) and dipalmitoylphosphatidylcholine (16:0), or with same acyl chains and different polar heads, dioleoylphosphatidylserine (18:1) and dioleoylphosphatidylcholine (18:1), were studied via molecular dynamics simulations. Four criteria of clustering were considered. It was shown that the water-lipid interface of biomembranes represents a highly dynamic and "mosaic" picture, whose parameters depend on the bilayer composition. Some systems (e.g. with 20-30% of the anionic lipid) demonstrate unusual clustering properties and demand further investigation at molecular level. Lateral microheterogeneities in fluid lipid bilayers seem to be among the most important factors determining the nature of the membrane-water interface in a cell.
    Journal of biomolecular Structure & Dynamics 07/2012; 31(1). DOI:10.1080/07391102.2012.691365 · 2.98 Impact Factor