Neder, I. et al. Interference between two indistinguishable electrons from independent sources. Nature 448, 333-337

Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
Nature (Impact Factor: 41.46). 08/2007; 448(7151):333-7. DOI: 10.1038/nature05955
Source: PubMed


Very much like the ubiquitous quantum interference of a single particle with itself, quantum interference of two independent, but indistinguishable, particles is also possible. For a single particle, the interference is between the amplitudes of the particle's wavefunctions, whereas the interference between two particles is a direct result of quantum exchange statistics. Such interference is observed only in the joint probability of finding the particles in two separated detectors, after they were injected from two spatially separated and independent sources. Experimental realizations of two-particle interferometers have been proposed; in these proposals it was shown that such correlations are a direct signature of quantum entanglement between the spatial degrees of freedom of the two particles ('orbital entanglement'), even though they do not interact with each other. In optics, experiments using indistinguishable pairs of photons encountered difficulties in generating pairs of independent photons and synchronizing their arrival times; thus they have concentrated on detecting bunching of photons (bosons) by coincidence measurements. Similar experiments with electrons are rather scarce. Cross-correlation measurements between partitioned currents, emanating from one source, yielded similar information to that obtained from auto-correlation (shot noise) measurements. The proposal of ref. 3 is an electronic analogue to the historical Hanbury Brown and Twiss experiment with classical light. It is based on the electronic Mach-Zehnder interferometer that uses edge channels in the quantum Hall effect regime. Here we implement such an interferometer. We partitioned two independent and mutually incoherent electron beams into two trajectories, so that the combined four trajectories enclosed an Aharonov-Bohm flux. Although individual currents and their fluctuations (shot noise measured by auto-correlation) were found to be independent of the Aharonov-Bohm flux, the cross-correlation between current fluctuations at two opposite points across the device exhibited strong Aharonov-Bohm oscillations, suggesting orbital entanglement between the two electron beams.


Available from: Yunchul Chung, May 09, 2014
  • Source
    • "In earlier experiments with an electronic two-path MZI, we found that ∂A /∂B ≈ 0, with the lines of constant phase having an opposite slope from the one measured with the FPI [5] [13]. Assume that all f T fully transmitted channels enclose a similar area A T . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Interference of edge channels is expected to be a prominent tool for studying statistics of charged quasiparticles in the quantum Hall effect (QHE). We present here a detailed study of an electronic Fabry-Perot interferometer (FPI) operating in the QHE regime [C. Chamon, et al. (1997) Phys Rev B 55:2331-2334], with the phase of the interfering quasiparticles controlled by the Aharonov-Bohm effect. Our main finding is that Coulomb interactions among the electrons dominate the interference, even in a relatively large area FPI, leading to a strong dependence of the area enclosed by the interference loop on the magnetic field. In particular, for a composite edge structure, with a few independent edge channels propagating along the edge, interference of the outmost edge channel (belonging to the lowest Landau level) was insensitive to magnetic field-suggesting a constant enclosed flux. However, when any of the inner edge channels interfered, the enclosed flux decreased when the magnetic field increased. By intentionally varying the enclosed area with a biased metallic gate and observing the periodicity of the interference pattern, charges e (for integer filling factors) and e/3 (for a fractional filling factor) were found to be expelled from the FPI. Moreover, these observations provided also a novel way of detecting the charge of the interfering quasiparticles.
    Proceedings of the National Academy of Sciences 03/2010; 107(12):5276-81. DOI:10.1073/pnas.0912624107 · 9.67 Impact Factor
  • Source
    • "The understanding of noise in the non-classical states of light facilitated the development of the theory of photodetection and led to the foundation of quantum optics [2]. In solid state systems current fluctuations were used to probe the nature of electrical transport in mesoscopic electron systems [3] [4] and to investigate quantum correlations and entanglement in electron interferometers [5] [6]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In many-body systems quantum mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide a complete experimental analysis of the shot-to-shot variations of interference fringe contrast for pairs of independently created one-dimensional Bose condensates. Analyzing different system sizes we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from Poissonian to Gumbel-type, in excellent agreement with theoretical predictions based on the Luttinger liquid formalism. We present the first experimental observation of quasi long-range order in one-dimensional atomic condensates, which is a hallmark of quantum fluctuations in one-dimensional systems. Furthermore, our experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system.
    Nature Physics 04/2008; 4:489. DOI:10.1038/nphys941 · 20.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have investigated the shot noise in the mesoscopic system composed of a quantum dot (QD) coupled to ferromagnetic terminals under the perturbation of ac fields. The shot noise has been derived using the nonequilibrium Green's function (NGF) technique to describe the spin polarization effect along with photon absorption and emission processes in the Coulomb blockade regime. We have examined the influence of spin polarization on the shot noise under the perturbation of ac fields in the nonadiabatic regime. The Coulomb blockade effect results in the modification of shot noise compared with the noninteracting case. The spin orientation contributes a spin valve effect for controlling electron tunnelling through this QD, and different resonant forms appear around the Coulomb blockade channel. The photon-assisted spin-splitting and spin-polarization effect contributes a photon-assisted spin valve to adjust the electron tunnelling current and shot noise. The spin-polarization effect varies the value of the Fano factor. However, it does not change the noise type from sub-Poissonian to super-Poissonian.
    Physics of Condensed Matter 10/2010; 77(3):441-451. DOI:10.1140/epjb/e2010-00291-2 · 1.35 Impact Factor
Show more