c-Myc is essential for hematopoietic stem cell differentiation and regulates Lin(-)Sca-1(+)c-Kit(-) cell generation through p21.

Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Madrid, Spain.
Experimental Hematology (Impact Factor: 2.81). 10/2007; 35(9):1333-43. DOI: 10.1016/j.exphem.2007.05.015
Source: PubMed

ABSTRACT The c-Myc protein is a member of the basic region/helix-loop-helix/leucine zipper (bHLHZip) transcription factor family, which is implicated in regulation of proliferation, differentiation, and apoptosis in multiple cell types. The aim of this study was to characterize the role of the proto-oncogene c-myc in hematopoietic stem cells (HSC) during postnatal development.
We have generated a conditional mouse model that allows us to inactivate c-myc in bone marrow (BM) in an inducible fashion.
We show that conditional inactivation of c-Myc in BM severely impairs HSC differentiation, leading to a striking decrease in the number of lymphoid and myeloid cells. c-Myc deletion in BM causes substantial accumulation of a Lin(-)Sca-1(+)c-Kit(-) cell population expressing high levels of the cell-cycle inhibitor p21, whose origin and function are otherwise poorly characterized. In vivo inactivation of p21 and c-Myc normalizes Lin(-)Sca-1(+)c-Kit(-) cell numbers and restores normal proliferation. The potential origin and function of these cells are discussed.
c-Myc plays a role in HSC maintenance and differentiation and might be regulating generation of Lin(-)Sca-1(+)c-Kit(-) through the cell-cycle regulator p21.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells. Second, we provide strong genetic evidence that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1. Moreover, LYL1 can substitute for SCL to reprogram thymocytes in concert with LMO1. In contrast, inhibition of E2A was not sufficient to substitute for SCL, indicating that thymocyte reprogramming requires transcription activation by SCL-LMO1. Third, only a specific subset of normal thymic cells, known as DN3 thymocytes, is susceptible to reprogramming. This is because physiological NOTCH1 signals are highest in DN3 cells compared to other thymocyte subsets. Consistent with this, overexpression of a ligand-independent hyperactive NOTCH1 allele in all immature thymocytes is sufficient to sensitize them to SCL-LMO1, thereby increasing the pool of self-renewing cells. Surprisingly, hyperactive NOTCH1 cannot reprogram thymocytes on its own, despite the fact that NOTCH1 is activated by gain of function mutations in more than 55% of T-ALL cases. Rather, elevating NOTCH1 triggers a parallel pathway involving Hes1 and Myc that dramatically enhances the activity of SCL-LMO1 We conclude that the acquisition of self-renewal and the genesis of pre-LSCs from thymocytes with a finite lifespan represent a critical first event in T-ALL. Finally, LYL1 and LMO1 or LMO2 are co-expressed in most human T-ALL samples, except the cortical T subtype. We therefore anticipate that the self-renewal network described here may be relevant to a majority of human T-ALL.
    PLoS Genetics 12/2014; 10(12):e1004768. DOI:10.1371/journal.pgen.1004768 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MYC is one of the most frequently deregulated oncogenes in human malignancies. It encodes a leucine zipper transcription factor that modulates a broad spectrum of cellular genes responsible for enhancing cell proliferation, cellular metabolism, growth, angiogenesis, metastasis, genomic instability, stem cell self-renewal and reduced differentiation. MYC functions predominantly as an amplifier of expression of already active genes, potentiating the pre-existing transcriptional program, although it can also repress certain transcriptional targets. In mouse models, MYC induces lymphomas, but requires cooperation with other lesions, including inactivation of the p53 pathway, structural alterations of BCL2 family members, or increased PI3K activity. In human B-cell tumors, MYC rearrangements involving the 8q24 region and immunoglobulin heavy or light genes are a hallmark of Burkitt lymphoma (BL), but can also occur in other lymphoid malignancies, that include diffuse large B-cell lymphoma (DLBCL), B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma (BCLU), plasma cell myeloma (PCM), mantle cell lymphoma (MCL) and plasmablastic lymphoma. For non-BL lymphoid malignancies, MYC fusions represent secondary genetic events and exist in the context of complex karyotypes. Regardless of the mechanism deregulating MYC, lymphomas over-expressing MYC are addicted to this oncogene, highlighting the potential clinical utility of MYC targeting strategies. Several promising approaches for pharmaceutical intervention have been suggested which are now in preclinical or clinical development. Herein, we therefore review the molecular pathogenetic mechanisms associated with MYC deregulation in human B-cell lymphomas and their implications for therapies targeting MYC.
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 12/2014; DOI:10.1016/j.bbcan.2014.08.006 · 7.58 Impact Factor