Structural and functional neuroimaging in mild-to-moderate head injury.

Department of Neurology, University Medical Center Groningen, Netherlands.
The Lancet Neurology (Impact Factor: 21.82). 09/2007; 6(8):699-710. DOI: 10.1016/S1474-4422(07)70191-6
Source: PubMed

ABSTRACT Head injury is a major cause of disability and death in adults. Significant developments in imaging techniques have contributed to the knowledge of the pathophysiology of head injury. Although extensive research is available on severe head injury, less is known about mild-to-moderate head injury despite the fact that most patients sustain this type of injury. In this review, we focus on structural and functional imaging techniques in patients with mild-to-moderate head injury. We discuss CT and MRI, including different MRI sequences, single photon emission computed tomography, perfusion-weighted MRI, perfusion CT, PET, magnetic resonance spectroscopy, functional MRI and magnetic encephalography. We outline the advantages and limitations of these various techniques in the contexts of the initial assessment and identification of brain abnormalities and the prediction of outcome.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance spectroscopy (MRS) and single-photon emission computed tomography (SPECT) have only been individually studied in patients with head injury. This study aimed to comparatively assess both in patients with mild to moderate head injury. Patients with a Glasgow Coma Scale (GCS) score of 9-14 who underwent MRS and/or SPECT were evaluated in relation to various clinical factors and neurological outcome at 3months. There were 56 SPECT (Tc99m-ethylcysteinate dimer [ECD]) studies and 41 single voxel proton MRS performed in 53 patients, with 41 patients having both. Of the 41 who underwent MRS, 13 had a lower N-acetyl-aspartate/creatine (NAA/Cr) ratio, 14 had a higher choline (Cho)/Cr ratio, 19 were normal, and nine had bilateral MRS abnormalities. Of the 56 who underwent SPECT, 22 and 19 had severe and moderate hypoperfusion, respectively. Among those in Traumatic Coma Data Bank CT scan category 1 and 2, 50% had MRS abnormalities, whereas 64% had SPECT hypoperfusion, suggesting greater incremental validity of SPECT over MRS. In univariate analyses, GCS, moderate/severe hypoperfusion and bilateral SPECT changes were found to have significant association with unfavorable outcome (odds ratio 13.2, 15.9, and 4.4, and p values <0.01, 0.01, and 0.05, respectively). Patients with lower NAA/Cr ratio in MRS had more unfavorable outcomes, however this was not significant. In multivariate analysis employing binary logistic regression, GCS and severe hypoperfusion on SPECT were noted to have significant association with unfavorable outcome, independent of age, CT scan category, and MRS abnormalities (p values=0.02 and 0.04, respectively). To conclude, ECD-SPECT seems to have greater sensitivity, incremental validity and prognostic value than single voxel proton MRS in select patients with head injury, with only severe hypoperfusion in SPECT significantly associated with unfavorable outcome independent of other confounding factors.
    Journal of Clinical Neuroscience 10/2013; 21(5). DOI:10.1016/j.jocn.2013.07.038 · 1.32 Impact Factor
  • Source
    Radiologia Brasileira 04/2011; 44(2):VII-VII. DOI:10.1590/S0100-39842011000200002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mild traumatic brain injury (mTBI) appears as low contrast lesions in magnetic resonance (MR) imaging. Standard automated detection approaches cannot detect the subtle changes caused by the lesions. The use of context has become integral for the detection of low contrast objects in images. Context is any information that can be used for object detection but is not directly due to the physical appearance of an object in an image. In this paper new low level static and dynamic context features are proposed and integrated into a discriminative voxel level classifier to improve the detection of mTBI lesions. Visual features, including multiple texture measures, are used to give an initial estimate of a lesion. From the initial estimate novel proximity and directional distance contextual features are calculated and used as features for another classifier. This feature takes advantage of spatial information given by the initial lesion estimate using only the visual features. Dynamic context is captured by the proposed posterior marginal edge distance context feature, which measures the distance from a hard estimate of the lesion at a previous time point. The approach is validated on a temporal mTBI rat model dataset and shown to have improved dice score and convergence compared to other state-of-the-art approaches. Analysis of feature importance and versatility of the approach on other datasets are also provided.
    IEEE transactions on bio-medical engineering 07/2014; 62(1). DOI:10.1109/TBME.2014.2342653 · 2.23 Impact Factor


Available from
May 16, 2014