Polymorphisms in PTGS1, PTGS2 and IL-10 do not influence colorectal adenoma recurrence in the context of a randomized aspirin intervention trial.

Section of Cancer Genetics, Institute of Cancer Research, Sutton SM2 5NG, United Kingdom.
International Journal of Cancer (Impact Factor: 6.2). 12/2007; 121(9):2001-4. DOI: 10.1002/ijc.22942
Source: PubMed

ABSTRACT Regular use of aspirin and other nonsteroidal antiinflammatory drugs reduces both the development of colorectal neoplasia and recurrence of colorectal adenoma (CRA). Modulation of the effects of aspirin by genetic factors has been reported, potentially allowing targeting of treatment to individuals most likely to gain benefit. Prostaglandin H synthase 1 (PTGS1) and PTGS2 are key enzymes in prostaglandin synthesis and are inhibited by aspirin, whilst interleukin-10 (IL-10) is an important antiinflammatory cytokine. We investigated whether functional genetic polymorphisms in the PTGS1, PTGS2 and IL-10 genes influence CRA recurrence in individuals participating in a randomized aspirin intervention trial. DNA was available for genotyping from 546 patients who received aspirin (300 mg daily) or placebo for a mean 41-months' duration. Homozygote carriers of variant alleles for the PTGS1 50C>T, PTGS2 -765G>C and IL-10 -592C>A polymorphisms did not have a significantly altered risk of CRA recurrence (relative risk [RR]=0.91; 95% confidence interval [CI]: 0.14-6.07, RR=1.32; 95% CI: 0.66-2.62 and RR=1.24; 95% CI: 0.74-2.07, respectively). There were also no significant interactions between aspirin intervention and genotype in determining recurrence risk. These data indicate that these polymorphisms are unlikely to influence CRA recurrence and cannot be used to identify individuals who derive benefit from aspirin intervention.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The cyclooxygenase (COX) activity of prostaglandin H synthase-2 (PGHS-2) is implicated in colorectal cancer and is targeted by nonsteroidal anti-inflammatory drugs (NSAIDs) and dietary n-3 fatty acids. We used purified, recombinant proteins to evaluate the functional impacts of the R228H, E488G, V511A and G587R PGHS-2 polymorphisms on COX activity, fatty acid selectivity and NSAID actions. Compared to wild-type PGHS-2, COX activity with arachidonate was ∼20% lower in 488G and ∼20% higher in 511A. All variants showed time-dependent inhibition by the COX-2-specific inhibitor (coxib) nimesulide, but 488G and 511A had 30-60% higher residual COX activity; 511A also showed up to 70% higher residual activity with other time-dependent inhibitors. In addition, 488G and 511A differed significantly from wild type in Vmax values with the two fatty acids: 488G showed ∼20% less and 511A showed ∼20% more discrimination against eicosapentaenoic acid. The Vmax value for eicosapentaenoate was not affected in 228H or 587R, nor were the Km values or the COX activation efficiency (with arachidonate) significantly altered in any variant. Thus, the E488G and V511A PGHS-2 polymorphisms may predict who will most likely benefit from interventions with some NSAIDs or n-3 fatty acids.
    The Pharmacogenomics Journal 10/2011; 11(5):337-47. · 5.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene discoveries in cancer have the potential for clinical and public health applications. To take advantage of such discoveries, a translational research agenda is needed to take discoveries from the bench to population health impact. To assess the current status of translational research in cancer genetics, we analyzed the extramural grant portfolio of the National Cancer Institute (NCI) from Fiscal Year 2007, as well as the cancer genetic research articles published in 2007. We classified both funded grants and publications as follows: T0 as discovery research; T1 as research to develop a candidate health application (e.g., test or therapy); T2 as research that evaluates a candidate application and develops evidence-based recommendations; T3 as research that assesses how to integrate an evidence-based recommendation into cancer care and prevention; and T4 as research that assesses health outcomes and population impact. We found that 1.8% of the grant portfolio and 0.6% of the published literature was T2 research or beyond. In addition to discovery research in cancer genetics, a translational research infrastructure is urgently needed to methodically evaluate and translate gene discoveries for cancer care and prevention.
    Public Health Genomics 01/2011; 14(1):1-8. · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The aim of the present work was to perform a meta-analysis to evaluate the association between the interleukin 10 (IL-10) -819C/T (rs1800871) polymorphism and cancer risk. A total of 73 studies, including 15,942 cancer cases and 22,336 controls, were identified in this meta-analysis. The odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using the random-effects model. Overall, no significant association was identified between the IL-10 -819C/T polymorphism and cancer risk. In the subgroup analyses, the T allele and TT genotype were associated with a moderately reduced cancer risk in the Asian population (T allele vs. C allele: OR=0.93, 95%CI: 0.87, 0.99; TT vs. CC: OR=0.86, 95%CI: 0.76, 0.98; TT vs. CT/CC: OR=0.90, 95%CI: 0.82, 0.98). Individuals who were homozygous for the T allele (TT) were found to be associated with significantly reduced gastric cancer risk in the Asian population. The heterozygous variant (CT) and the dominant model (TT/CT vs. CC) were associated with an increased risk for cervical and ovarian cancer. However, the IL-10 -819C/T polymorphism was not significantly associated with breast cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, prostate cancer, lymphoma, or melanoma. The depressed cancer risk of the TT genotype occurred in the studies of hospital-based case-control studies and the studies recruited less than 500 subjects, but no statistically significant results were found in the stratified analyses using genotyping method. The results suggest that the IL-10 -819TT genotype may be a protective factor for cancer in Asians, especially gastric cancer. In contrast, the CT genotype and the dominant model could be risk factors for cervical and ovarian cancer. The importance of stratifying by ethnicity, cancer type, study design, and sample size needs to be standardized in future studies, together with considering the association between the IL-10 -819C/T polymorphism and cancer risk. Furthermore, the linkage of -819C/T with other polymorphisms of the IL-10 gene may help explain the variability in findings.
    Omics: a journal of integrative biology 04/2013; 17(4):200-14. · 2.29 Impact Factor

Full-text (2 Sources)

Available from
Oct 6, 2014