Mass spectrometric identification of Rab23 phosphorylation as a response to challenge by cytidine 3',5'-cyclic monophosphate in mouse brain.

Biochemistry Group, Department of Biological Sciences, SOTEAS, Wallace Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
Rapid Communications in Mass Spectrometry (Impact Factor: 2.51). 02/2007; 21(16):2685-92. DOI: 10.1002/rcm.3141
Source: PubMed

ABSTRACT While the functions and mechanisms of action of adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) are well established and are the basis of the action of a large number of successful pharmaceuticals, the role of a third naturally occurring cyclic nucleotide, cytidine 3',5'-cyclic monophosphate (cCMP), remains to be elucidated. Immobilized metal affinity chromatography (IMAC) was used to selectively extract proteins phosphorylated in mouse brain in response to challenge by cAMP, cGMP and cCMP, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToFMS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) of tryptic digests to identify Rab23 as the first protein reported to be phosphorylated only in response to cCMP.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein biomarker discovery from biological fluids, such as serum, has been widely applied to disorders such as cancer and has more recently also been utilized in neuro-psychiatric disorders with relatively clear biological causes, such as Alzheimer's disease and schizophrenia. The application of the associated technologies for the identification of protein biomarker signatures in neurodevelopmental disorders, such as autism spectrum disorder and attention deficit hyperactivity disorder, is comparatively less well established. The aim of this article is to provide an overview of the various protocols available for such analysis, discuss reports in which these techniques have been previously applied in biomarker discovery/validation in neurodevelopmental disorders, and consider the future development of this area of research.
    Expert Review of Proteomics 02/2011; 8(1):127-36. · 3.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rab11 is a small GTPase that controls diverse intracellular trafficking pathways. However, the molecular machinery that regulates the participation of Rab11 in those different transport events is poorly understood. In resting cells, Rab11 localizes at the endocytic recycling compartment (ERC), whereas the different protein kinase C (PKC) isoforms display a cytosolic distribution. Sustained phorbol ester stimulation induces the translocation of the classical PKCα and PKCβII isoenzymes to the ERC enriched in Rab11, and results in transferrin recycling inhibition. In contrast, novel PKCε and atypical PKCζ isoenzymes neither redistribute to the perinucleus nor modify transferrin recycling transport after phorbol ester stimulation. Although several Rabs have been shown to be phosphorylated, there is to date no evidence indicating Rab11 as a kinase substrate. In this report, we show that Rab11 appears phosphorylated in vivo in phorbol ester-stimulated cells. A bioinformatic analysis of Rab11 allowed us to identify several high-probability Ser/Thr kinase phosphorylation sites. Our results demonstrate that classical PKC (PKCα and PKCβII but not PKCβI) directly phosphorylate Rab11 in vitro. In addition, novel PKCε and PKCη but not PKCδ isoenzymes also phosphorylate Rab11. Mass spectrometry analysis revealed that Ser 177 is the Rab11 residue to be phosphorylated in vitro by either PKCβII or PKCε. In agreement, the phosphomimetic mutant, Rab11 S177D, retains transferrin at the ERC in the absence of phorbol-12-myristate-13-acetate stimulus. This report shows for the first time that Rab11 is differentially phosphorylated by distinct PKC isoenzymes and that this post-translational modification might be a regulatory mechanism of intracellular trafficking.
    Biology of the Cell 12/2011; 104(2):102-15. · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteins have the potential to undergo a variety of post-translational modifications and the different methods available to study these cellular processes has advanced rapidly with the continuing development of proteomic technologies. In this review we aim to detail five major post-translational modifications (phosphorylation, glycosylaion, lipid modification, ubiquitination and redox-related modifications), elaborate on the techniques that have been developed for their analysis and briefly discuss the study of these modifications in selected areas of plant science.
    Phytochemistry 02/2011; 72(10):975-96. · 3.05 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014