A whole-genome association study of major determinants for host control of HIV-1.

Center for Population Genomics and Pharmacogenetics, Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710, USA.
Science (Impact Factor: 31.48). 09/2007; 317(5840):944-7. DOI: 10.1126/science.1143767
Source: PubMed

ABSTRACT Understanding why some people establish and maintain effective control of HIV-1 and others do not is a priority in the effort to develop new treatments for HIV/AIDS. Using a whole-genome association strategy, we identified polymorphisms that explain nearly 15% of the variation among individuals in viral load during the asymptomatic set-point period of infection. One of these is found within an endogenous retroviral element and is associated with major histocompatibility allele human leukocyte antigen (HLA)-B*5701, whereas a second is located near the HLA-C gene. An additional analysis of the time to HIV disease progression implicated two genes, one of which encodes an RNA polymerase I subunit. These findings emphasize the importance of studying human genetic variation as a guide to combating infectious agents.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: A selective susceptibility of certain individuals to form multiple alloantibodies in response to red cell transfusion is well-recognized in clinical practice, and is a particular problem in persons with sickle cell disease (SCD). The reason for this differential susceptibility is unclear, but inter-individual genetic differences are likely to contribute. We conducted a pilot case-control genome-wide association study using 1,000,000 SNPs in 94 alloimmune responders (cases) and non-responders (controls) with SCD in order to identify loci of large effect size associated with alloimmunization. No loci showed evidence of association at a genome-wide significance cut-off (p < 0.5 × 10(-8)). SNPs in the ARAP1/STARD10 region showed suggestive association (p < 1 × 10(-6)), but no association was observed at previously implicated loci TRIM21 or HLA. In analyses of the number of accumulated antibodies, a modest association was found with SNPs in the Toll-like receptor gene TLR10 (p < 1 × 10(-4)). Alloimmunization in persons with SCD is unlikely to be mediated by loci of very large effect size; however, larger and more comprehensive studies are required to fully evaluate loci with more moderate effects. This study provides a working approach to such future studies in SCD.
    Transfusion Medicine and Hemotherapy 11/2014; 41(6):453-61. DOI:10.1159/000369079 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/founder (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.
    PLoS Pathogens 01/2015; 11(1):e1004565. DOI:10.1371/journal.ppat.1004565 · 8.06 Impact Factor
  • Source
    International Journal of Epidemiology 11/2009; 39(5):1179-1189. DOI:10.1093/ije/dyp321 · 9.20 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014