Article

SMN-independent subunits of the SMN complex - Identification of a small nuclear ribonucleoprotein assembly intermediate

Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 10/2007; 282(38):27953-9. DOI: 10.1074/jbc.M702317200
Source: PubMed

ABSTRACT The survival of motor neurons (SMN) complex is essential for the biogenesis of small nuclear ribonucleoprotein (snRNP) complexes in eukaryotic cells. Reduced levels of SMN cause the motor neuron degenerative disease, spinal muscular atrophy. We identify here stable subunits of the SMN complex that do not contain SMN. Sedimentation and immunoprecipitation experiments using cell extracts reveal at least three complexes composed of Gemin3, -4, and -5; Gemin6, -7, and unrip; and SMN with Gemin2, as well as free Gemin5. Complexes containing Gemin3-Gemin4-Gemin5 and Gemin6-Gemin7-unrip persist at similar levels when SMN is reduced. In cells, immunofluorescence microscopy shows differential localization of Gemin5 after cell stress. We further show that the Gemin5-containing subunits bind small nuclear RNA independently of the SMN complex and without a requirement for exogenous ATP. ATP hydrolysis is, however, required for displacement of small nuclear RNAs from the Gemin5-containing subunits and their assembly into snRNPs. These findings demonstrate a modular nature of the SMN complex and identify a new intermediate in the snRNP assembly process.

0 Followers
 · 
68 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are small non-coding RNAs that suppress gene expression through target mRNA degradation or translation repression. Recent studies suggest that miRNA plays an important role in multiple physiological and pathological processes in the nervous system. In this review article, we described what is currently known about the mechanisms in peripheral nerve regeneration on cellular and molecular levels. Recently, changes in microRNA expression profiles have been detected in different injury models, and emerging evidence strongly indicates that these changes promote neurons to survive by shifting their physiology from maintaining structure and supporting synaptic transmission towards a regenerative phenotype. We reviewed the putative mechanisms involved in miRNA mediated post-transcriptional regulation and pointed out several areas where future research is necessary to advance our understanding of how targeting miRNA machinery can be used as a therapeutic approach for treating nerve injuries.
    Frontiers in Physiology 04/2013; 4:55. DOI:10.3389/fphys.2013.00055
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A unique attribute of RNA molecules synthesized by RNA polymerase II is the presence of a 7-methylguanosine (m(7)G) cap structure added co-transcriptionally to the 5' end. Through its association with trans-acting effector proteins, the m(7)G cap participates in multiple aspects of RNA metabolism including localization, translation and decay. However, at present relatively few eukaryotic proteins have been identified as factors capable of direct association with m(7)G. Employing an unbiased proteomic approach, we identified gemin5, a component of the survival of motor neuron (SMN) complex, as a factor capable of direct and specific interaction with the m(7)G cap. Gemin5 was readily purified by cap-affinity chromatography in contrast to other SMN complex proteins. Investigating the underlying basis for this observation, we found that purified gemin5 associates with m(7)G-linked sepharose in the absence of detectable eIF4E, and specifically crosslinks to radiolabeled cap structure after UV irradiation. Deletion analysis revealed that an intact set of WD repeat domains located in the N-terminal half of gemin5 are required for cap-binding. Moreover, using structural modeling and site-directed mutagenesis, we identified two proximal aromatic residues located within the WD repeat region that significantly impact m(7)G association. This study rigorously identifies gemin5 as a novel cap-binding protein and describes an unprecedented role for WD repeat domains in m(7)G recognition. The findings presented here will facilitate understanding of gemin5's role in the metabolism of non-coding snRNAs and perhaps other RNA pol II transcripts.
    PLoS ONE 09/2009; 4(9):e7030. DOI:10.1371/journal.pone.0007030 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The chromosomal translocation t(4;14) deregulates MMSET (WHSC1/NSD2) expression and is a poor prognostic factor in multiple myeloma (MM). MMSET encodes two major protein isoforms. We have characterized the role of the shorter isoform (REIIBP) in myeloma cells and identified a clear and novel interaction of REIIBP with members of the SMN (survival of motor neuron) complex that directly affects the assembly of the spliceosomal ribonucleic particles. Using RNA-seq we show that REIIBP influences the RNA splicing pattern of the cell. This new discovery provides novel insights into the understanding of MM pathology, and potential new leads for therapeutic targeting.
    PLoS ONE 06/2014; 9(6):e99493. DOI:10.1371/journal.pone.0099493 · 3.53 Impact Factor