Article

Vision and Foraging in Cormorants: More like Herons than Hawks?

Centre for Ornithology, School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
PLoS ONE (Impact Factor: 3.53). 02/2007; 2(7):e639. DOI: 10.1371/journal.pone.0000639
Source: PubMed

ABSTRACT Great cormorants (Phalacrocorax carbo L.) show the highest known foraging yield for a marine predator and they are often perceived to be in conflict with human economic interests. They are generally regarded as visually-guided, pursuit-dive foragers, so it would be expected that cormorants have excellent vision much like aerial predators, such as hawks which detect and pursue prey from a distance. Indeed cormorant eyes appear to show some specific adaptations to the amphibious life style. They are reported to have a highly pliable lens and powerful intraocular muscles which are thought to accommodate for the loss of corneal refractive power that accompanies immersion and ensures a well focussed image on the retina. However, nothing is known of the visual performance of these birds and how this might influence their prey capture technique.
We measured the aquatic visual acuity of great cormorants under a range of viewing conditions (illuminance, target contrast, viewing distance) and found it to be unexpectedly poor. Cormorant visual acuity under a range of viewing conditions is in fact comparable to unaided humans under water, and very inferior to that of aerial predators. We present a prey detectability model based upon the known acuity of cormorants at different illuminances, target contrasts and viewing distances. This shows that cormorants are able to detect individual prey only at close range (less than 1 m).
We conclude that cormorants are not the aquatic equivalent of hawks. Their efficient hunting involves the use of specialised foraging techniques which employ brief short-distance pursuit and/or rapid neck extension to capture prey that is visually detected or flushed only at short range. This technique appears to be driven proximately by the cormorant's limited visual capacities, and is analogous to the foraging techniques employed by herons.

1 Follower
 · 
107 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Birds show interspecific variation both in the size of the fields of individual eyes and in the ways that these fields are brought together to produce the total visual field. Variation is found in the dimensions of all main parameters: binocular region, cyclopean field and blind areas. There is a phylogenetic signal with respect to maximum width of the binocular field in that passerine species have significantly broader field widths than non-passerines; broadest fields are found among crows (Corvidae). Among non-passerines, visual fields show considerable variation within families and even within some genera. It is argued that (i) the main drivers of differences in visual fields are associated with perceptual challenges that arise through different modes of foraging, and (ii) the primary function of binocularity in birds lies in the control of bill position rather than in the control of locomotion. The informational function of binocular vision does not lie in binocularity per se (two eyes receiving slightly different information simultaneously about the same objects from which higher-order depth information is extracted), but in the contralateral projection of the visual field of each eye. Contralateral projection ensures that each eye receives information from a symmetrically expanding optic flow-field from which direction of travel and time to contact targets can be extracted, particularly with respect to the control of bill position.
    Philosophical Transactions of The Royal Society B Biological Sciences 02/2014; 369(1636):20130040. DOI:10.1098/rstb.2013.0040 · 6.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For many polar species, climate change is likely to result in range contractions and negative population trends. For those species whose distribution is limited by sea ice and cold water, however, polar warming could result in population increases and range expansion. Population increases of great cormorants Phalacrocorax carbo in Greenland are associated with warmer sea surface temperatures, but the actual impact of environmental change on cormorant spatial ecology remains unclear. In the present study, we investigate how Arctic warming is likely to influence the distribution of cormorants in Greenland. Using geolocation data, we show that many individuals that breed above the Arctic Circle migrate south and winter at lower latitude. We then couple estimates of migratory flight costs with a model that predicts daily energy expenditure during winter on the basis of water temperature, ambient illumination during diving, dive depth and day length. This model shows that the most energy efficient strategy predicted for any breeding location is to migrate as far south as possible, and that, for a given wintering location, it is more energetically expensive to breed at high latitude. We argue that cormorants currently undertake a winter migration to escape the polar night and reduce winter energy costs and that their wintering grounds in Greenland will remain largely unchanged under Arctic warming. This is because low levels of ambient illumination during the polar night will continue to restrict foraging opportunities at high latitude during winter. Northward expansion of the breeding range will result in increased energy expenditure associated with long migratory flights, and the cost of such flights may ultimately limit the breeding range of cormorants. Such limitations are likely to represent a general constraint on the capacity of visually guided predators to respond to climate warming, and may limit the predicted poleward range shifts of these species.
    Journal of Zoology 02/2013; 289(2). DOI:10.1111/j.1469-7998.2012.00968.x · 1.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t Sensory capacities and perceptual challenges faced by gillnet bycatch taxa result from fundamental physiological limits on vision and constraints arising within underwater en-vironments. To reduce bycatch in birds, sea turtles, pinnipeds and blue-water fishes, in-dividuals must be alerted to the presence of nets using visual cues. Cetaceans will benefit but they also require warning with cues detected through echolocation. Characteristics of a visual warning stimulus must accommodate the restricted visual capacities of bycatch species and the need to maintain vision in a dark adapted state when foraging. These re-quirements can be provided by a single type of visual warning stimulus: panels containing a pattern of low spatial frequency and high internal contrast. These are likely to be de-tectable across a range of underwater light environments by all bycatch prone taxa, but are unlikely to reduce the catch of target fish species. Such panels should also be readily de-tectable by cetaceans using echolocation. Use of sound signals to warn about the presence of gillnets is not recommended because of the poor sound localisation abilities of bycatch taxa, cetaceans excepted. These warning panels should be effective as a mitigation measure for all bycatch species, relatively easy to deploy and of low cost. © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Contents
    01/2015; 3:28-50. DOI:10.1016/j.gecco.2014.11.004

Full-text (2 Sources)

Download
41 Downloads
Available from
May 26, 2014

Similar Publications