Article

The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function

Department of Chemical Engineering and Materials Science, The Henry Samueli School of Engineering, University of California, Irvine, CA 92697-2715, USA.
Cell Biochemistry and Biophysics (Impact Factor: 2.38). 02/2007; 47(2):300-20. DOI: 10.1007/s12013-007-0004-y
Source: PubMed

ABSTRACT The ability to harvest and maintain viable cells from mammalian tissues represented a critical advance in biomedical research, enabling individual cells to be cultured and studied in molecular detail. However, in these traditional cultures, cells are grown on rigid glass or polystyrene substrates, the mechanical properties of which often do not match those of the in vivo tissue from which the cells were originally derived. This mechanical mismatch likely contributes to abrupt changes in cellular phenotype. In fact, it has been proposed that mechanical changes in the cellular microenvironment may alone be responsible for driving specific cellular behaviors. Recent multidisciplinary efforts from basic scientists and engineers have begun to address this hypothesis more explicitly by probing the effects of ECM mechanics on cell and tissue function. Understanding the consequences of such mechanical changes is physiologically relevant in the context of a number of tissues in which altered mechanics may either correlate with or play an important role in the onset of pathology. Examples include changes in the compliance of blood vessels associated with atherosclerosis and intimal hyperplasia, as well as changes in the mechanical properties of developing tumors. Compelling evidence from 2-D in vitro model systems has shown that substrate mechanical properties induce changes in cell shape, migration, proliferation, and differentiation, but it remains to be seen whether or not these same effects translate to 3-D systems or in vivo. Furthermore, the molecular "mechanotransduction" mechanisms by which cells respond to changes in ECM mechanics remain unclear. Here, we provide some historical context for this emerging area of research, and discuss recent evidence that regulation of cytoskeletal tension by changes in ECM mechanics (either directly or indirectly) may provide a critical switch that controls cell function.

Download full-text

Full-text

Available from: Shelly Peyton, May 23, 2015
2 Followers
 · 
228 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the endothelium is an extremely thin single-cell layer, it performs exceedingly well in preventing blood fluids from leaking into the surrounding tissues. However, specific pathological conditions can affect this cell layer, compromising the integrity of the barrier. Vascular leakage is a hallmark of many cardiovascular diseases and despite its medical importance, no specialized therapies are available to prevent it or reduce it. Small guanosine triphosphatases (GTPases) of the Rho family are known to be key regulators of various aspects of cell behavior and studies have shown that they can exert both positive and negative effects on endothelial barrier integrity. Moreover, extracellular matrix stiffness has now been implicated in the regulation of Rho-GTPase signaling, which has a direct impact on the integrity of endothelial junctions. However, knowledge about both the precise mechanism of this regulation and the individual contribution of the specific regulatory proteins remains fragmentary. In this review, we discuss recent findings concerning the balanced activities of Rho-GTPases and, in particular, aspects of the regulation of the endothelial barrier. We highlight the role of Rho-GTPases in the intimate relationships between biomechanical forces, microenvironmental influences and endothelial intercellular junctions, which are all interwoven in a beautiful filigree-like fashion.
    Cell and Tissue Research 03/2014; 355(3). DOI:10.1007/s00441-014-1828-6 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells actively probe the stiffness of their surrounding and respond to it. The authors recently found that maintenance of the chondrogenic phenotype was directly influenced by this property in 2D. Since studies about this process in 3D are still largely absent, this study aimed to transfer this knowledge into a 3D environment. Agarose was modified with RGD to allow active stiffness sensing or RGE as a control. Hydrogels with different mechanical properties were produced by using different concentrations of agarose. Primary chondrocytes were incorporated into the gel, cultured for up to two weeks, and then constructs were analyzed. Cells were surrounded by their own ECM from an early stage and maintained their chondrogenic phenotype, independent of substrate composition, as indicated by a high collagen type II and a lack of collagen type I production. However, softer gels showed higher DNA and GAG content and larger cell clusters than stiff gels in both RGD- and RGE-modified agarose. The authors hypothesize that matrix elasticity in the tested range does not influence the maintenance of the chondrogenic phenotype in 3D but rather the size of the formed cell ECM clusters. The deviation of these findings from previous results in 2D stresses the importance of moving towards 3D systems that more closely mimic in vivo conditions. Copyright © 2011 John Wiley & Sons, Ltd.
    Journal of Tissue Engineering and Regenerative Medicine 11/2012; 6(10). DOI:10.1002/term.501 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Design of 3D scaffolds that can facilitate proper survival, proliferation, and differentiation of progenitor cells is a challenge for clinical applications involving large connective tissue defects. Cell migration within such scaffolds is a critical process governing tissue integration. Here, we examine effects of scaffold pore diameter, in concert with matrix stiffness and adhesivity, as independently tunable parameters that govern marrow-derived stem cell motility. We adopted an "inverse opal" processing technique to create synthetic scaffolds by crosslinking poly(ethylene glycol) at different densities (controlling matrix elastic moduli or stiffness) and small doses of a heterobifunctional monomer (controlling matrix adhesivity) around templating beads of different radii. As pore diameter was varied from 7 to 17 µm (i.e., from significantly smaller than the spherical cell diameter to approximately cell diameter), it displayed a profound effect on migration of these stem cells-including the degree to which motility was sensitive to changes in matrix stiffness and adhesivity. Surprisingly, the highest probability for substantive cell movement through pores was observed for an intermediate pore diameter, rather than the largest pore diameter, which exceeded cell diameter. The relationships between migration speed, displacement, and total path length were found to depend strongly on pore diameter. We attribute this dependence to convolution of pore diameter and void chamber diameter, yielding different geometric environments experienced by the cells within.
    Biotechnology and Bioengineering 05/2011; 108(5):1181-93. DOI:10.1002/bit.23027 · 4.16 Impact Factor