Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation.

Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
Journal of Neuroscience (Impact Factor: 6.91). 08/2007; 27(30):7987-8001. DOI:10.1523/JNEUROSCI.2180-07.2007
Source: PubMed

ABSTRACT Evidence has been accumulated that glioblastoma cells release and exploit glutamate for proliferation and migration by autocrine or paracrine loops through Ca2+-permeable AMPA-type glutamate receptors. Here, we show that Ca2+ signaling mediated by AMPA receptor regulates the growth and motility of glioblastoma cells via activation of Akt. Ca2+ supplied through Ca2+-permeable AMPA receptor phosphorylated Akt at Ser-473, thereby facilitating proliferation and mobility. A dominant-negative form of Akt inhibited cell proliferation and migration accelerated by overexpression of Ca2+-permeable AMPA receptor. In contrast, introduction of a constitutively active form of Akt rescued tumor cells from apoptosis induced by the conversion of Ca2+-permeable AMPA receptor to Ca2+-impermeable receptors by the delivery of GluR2 cDNA. Therefore, Akt functions as downstream effectors for Ca2+-signaling mediated by AMPA receptor in glioblastoma cells. The activation of the glutamate-AMPA receptor-Akt pathway may contribute to the high degree of anaplasia and invasive growth of human glioblastoma. This novel pathway might give an alternative therapeutic target.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM) is the most common malignant glioma, which has high proliferative rate and an extremely invasive phenotype. Major limitations in the effective treatment of malignant gliomas are the proliferation and infiltration into the surrounding brain tissue. Although studies have shown that various stimuli promote glioma cell proliferation and invasion, the underlying mechanisms remain largely unknown. Glioma cells secrete significant amount of glutamate into surrounding tissue and intracellular signaling is thought to be initiated upon glutamate-induced modulation of the ion channels in GBM cells. The objective of the study was to investigate the effect of activation of NMDA (N-methyl-D-aspartate) receptors of glutamate on gelatinase subfamily MMPs and on proliferation of glioma cells. U251MG and U87MG cell lines were maintained in Dulbecco's Modified Eagle's Medium. Proliferation assay was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole (MTT) assay. Matrix metalloproteinase (MMP)-2 and MMP-9 activity was investigated by gelatin zymography assay. We demonstrate that activated NMDA receptors (NMDAR) increased the activity of MMP-2 only in U251MG glioma cells at concentrations of 100 and 200 μM and increased the proliferation of both U87MG and U251MG glioma cells at concentrations of 50, 100, 150 and 200 μM. Inhibition of NMDAR using MK-801, a non-competitive antagonist of the NMDAR, significantly inhibited the effect of activation of NMDAR on MMP-2 activity and on proliferation. We conclude that NMDA receptor activation has role in activity of MMP-2 and proliferation of glioma cells.
    Neurological Sciences 12/2013; · 1.41 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Accumulating evidence has suggested the importance of glutamate signaling in cancer growth, yet the signaling pathway has not been fully elucidated. N-methyl-D-aspartic acid (NMDA) receptor activates intracellular signaling pathways such as the extracellular-signal-regulated kinase (ERK) and forkhead box, class O (FOXO). Suppression of lung carcinoma growth by NMDA receptor antagonists via the ERK pathway has been reported. However, series of evidences suggested the importance of FOXO pathways for the regulation of normal and cancer cell growth. In the liver, FOXO1 play important roles for the cell proliferation such as hepatic stellate cells as well as liver metabolism. Our aim was to investigate the involvement of the FOXO pathway and the target genes in the growth inhibitory effects of NMDA receptor antagonist MK-801 in human hepatocellular carcinoma. Expression of NMDAR1 in cancer cell lines from different tissues was examined by Western blot. NMDA receptor subunits in HepG2, HuH-7, and HLF were examined by reverse transcriptase polymerase chain reaction (RT-PCR), and growth inhibition by MK-801 and NBQX was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of MK-801 on the cell cycle were examined by flow cytometry and Western blot analysis. Expression of thioredoxin-interacting protein (TXNIP) and p27 was determined by real-time PCR and Western blotting. Activation of the FOXO pathway and TXNIP induction were examined by Western blotting, fluorescence microscopy, Chromatin immunoprecipitation (ChIP) assay, and reporter gene assay. The effects of TXNIP on growth inhibition were examined using the gene silencing technique. NMDA receptor subunits were expressed in all cell lines examined, and MK-801, but not NBQX, inhibited cell growth of hepatocellular carcinomas. Cell cycle analysis showed that MK-801 induced G1 cell cycle arrest by down-regulating cyclin D1 and up-regulating p27. MK-801 dephosphorylated Thr24 in FOXO1 and induced its nuclear translocation, thus increasing transcription of TXNIP, a tumor suppressor gene. Knock-down of TXNIP ameliorated the growth inhibitory effects of MK-801. Our results indicate that functional NMDA receptors are expressed in hepatocellular carcinomas and that the FOXO pathway is involved in the growth inhibitory effects of MK-801. This mechanism could be common in hepatocellular carcinomas examined, but other mechanisms such as ERK pathway could exist in other cancer cells as reported in lung carcinoma cells. Altered expression levels of FOXO target genes including cyclin D1 and p27 may contribute to the inhibition of G1/S cell cycle transition. Induction of the tumor suppressor gene TXNIP plays an important role in the growth inhibition by MK-801. Our report provides new evidence that FOXO-TXNIP pathway play a role in the inhibition of the hepatocellular carcinoma growth by MK-801.
    BMC Cancer 10/2013; 13(1):468. · 3.33 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A-to-I RNA editing is a post-transcriptional modification that converts adenosines to inosines in both coding and noncoding RNA transcripts. It is catalyzed by ADAR (adenosine deaminase acting on RNA) enzymes, which exist throughout the body but are most prevalent in the central nervous system. Inosines exhibit properties that are most similar to those of guanosines. As a result, ADAR-mediated editing can post-transcriptionally alter codons, introduce or remove splice sites, or affect the base pairing of the RNA molecule with itself or with other RNAs. A-to-I editing is a mechanism that regulates and diversifies the transcriptome, but the full biological significance of ADARs is not understood. ADARs are highly conserved across vertebrates and are essential for normal development in mammals. Aberrant ADAR activity has been associated with a wide range of human diseases, including cancer, neurological disorders, metabolic diseases, viral infections and autoimmune disorders. ADARs have been shown to contribute to disease pathologies by editing of glutamate receptors, editing of serotonin receptors, mutations in ADAR genes, and by other mechanisms, including recently identified regulatory roles in microRNA processing. Advances in research into many of these diseases may depend on an improved understanding of the biological functions of ADARs. Here, we review recent studies investigating connections between ADAR-mediated RNA editing and human diseases.
    Genome Medicine 11/2013; 5(11):105. · 3.40 Impact Factor