Ganglioside GD1a negatively regulates matrix metalloproteinase-9 expression in mouse FBJ cell lines at the transcriptional level.

Laboratory of Tumor Biology and Glycobiology, Shenyang Pharmaceutical University, Shenyang, P. R. China.
Connective Tissue Research (Impact Factor: 1.98). 02/2007; 48(4):198-205. DOI: 10.1080/03008200701458731
Source: PubMed

ABSTRACT Mouse FBJ virus-induced osteosarcoma FBJ-S1 cells rich in GD1a are not readily metastatic, whereas FBJ-LL cells with low levels of GD1a are highly metastatic. GD1a was previously shown to suppress metastasis of mouse FBJ cells and to upregulate caveolin-1 and stromal interaction molecule 1 expression. The present study demonstrates that matrix metalloproteinase-9 (MMP-9) expression renders FBJ-LL cells invasive. MMP-9 is inversely regulated by GD1a, based upon four observations: MMP-9 mRNA content was 5 times higher in FBJ-LL cells than FBJ-S1 cells; a GD1a-re-expressing FBJ-LL cell variant produced through beta1,4GalNAcT-1 cDNA transfection expressed lower levels of MMP-9; exogenous addition of GD1a to FBJ-LL cells decreased MMP-9 production in a dose- and time-dependent manner; and treatment of GD1a-rich cells with D-PDMP or siRNA targeting St3gal2 decreased GD1a expression, but augmented MMP-9 expression. This is the first report demonstrating that GD1a negatively regulates expression of MMP-9 at the transcriptional level.


Available from: Tatsuya Yamagata, Jun 13, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ganglioside GD1a has been reported to suppress metastasis [S. Hyuga, S. Yamagata, Y. Takatsu, M. Hyuga, H. Nakanishi, K. Furukawa, T. Yamagata, Suppression of FBJ-LL cell adhesion to vitronectin by ganglioside GD1a and loss of metastatic capacity, International J. Cancer. 83 (1999) 685-691.] and MMP-9 production in mouse osteosarcoma FBJ cells [D. Hu, Z. Man, P. Wang, X. Tan, X. Wang, S. Takaku, S. Hyuga, T. Sato, X. Yao, S. Yamagata, T. Yamagata, Ganglioside GD1a negatively regulates MMP9 expression in mouse FBJ cell lines at the transcriptional level, Connect. Tissue Res. 48 (2007) 198-205.]. In the present study, TNFalpha increased cell motility and MMP-9 and TNFalpha expression at the transcriptional level. TNFalpha expression was found to be inversely proportional to GD1a content in the FBJ-cell variants. The addition of exogenous GD1a to FBJ-LL cells suppressed TNFalpha expression, and treatment of FBJ-S1 cells with D-PDMP (glucosylceramide synthesis inhibitor) led to an increase in TNFalpha, indicating that TNFalpha is negatively regulated by GD1a in FBJ cells. SiRNA of Pkn1, a Rho-GTPase effecter protein kinase, suppressed TNFalpha levels as well as Pkn1 expression, suggesting that Pkn1 is involved in TNFalpha signaling. Treatment of Pkn1-silenced FBJ-LL cells with GD1a failed to suppress TNFalpha expression, demonstrating that GD1a signals that lead to TNFalpha suppression are transduced through Pkn1.
    Biochemical and Biophysical Research Communications 07/2008; 371(2):230-5. DOI:10.1016/j.bbrc.2008.04.053 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper introduces two kinds of quasiconcave mappings which are different from the usual quasiconcave function. We establish a result for the existence of solutions for the system of vector quasi-equilibrium problems in the frame of topological order, by providing a maximal elements version of the well known Browder fixed points theorem.
    Computers & Mathematics with Applications 08/2011; 62(4):1979-1983. DOI:10.1016/j.camwa.2011.06.041 · 2.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycosphingolipids (GSLs) comprise a heterogeneous group of membrane lipids formed by a ceramide backbone covalently linked to a glycan moiety. Hundreds of different glycans can be linked to tens of different ceramide molecules, giving rise to an astonishing variety of structurally different compounds, each of which has the potential for a specific biological function. GSLs have been suggested to modulate membrane-protein function and to contribute to cell-cell communication. Although GSLs are dispensable for cellular life, they are indeed collectively required for the development of multicellular organisms, and are thus considered to be key molecules in 'cell sociology'. Consequently, the GSL make-up of individual cells is highly dynamic and is strictly linked to the cellular developmental and environmental state. In the present review, we discuss some of the available knowledge, open questions and future perspectives relating to the study of GSL biology.
    FEBS Journal 10/2013; 280(24). DOI:10.1111/febs.12559 · 3.99 Impact Factor