Article

Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases.

Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, HUP/Maloney 3rd Floor, Philadelphia, PA 19104-4283, USA.
Acta Neuropathologica (Impact Factor: 9.78). 09/2007; 114(3):221-9. DOI: 10.1007/s00401-007-0261-2
Source: PubMed

ABSTRACT Here, we investigated if TAR-DNA-binding protein-43 (TDP-43), the disease protein in frontotemporal lobar degeneration and ubiquitin inclusions with or without motor neuron disease as well as amyotrophic lateral sclerosis, also formed inclusions in Lewy body (LB) disorders including Parkinson's disease (PD) without or with dementia (PDD), and dementia with LBs (DLB) alone or in association with Alzheimer's disease (AD). Immunohistochemical analyses of TDP-43 in clinically well characterized and pathologically confirmed cases of DLB + AD, PD and PDD demonstrated TDP-43 pathology in the following percentage of cases: DLB + AD = 25/80 (31.3%); PD = 5/69 (7.2%); PDD = 4/21 (19%), while DLB and normal controls exhibited no (0/10, 0%) and one cases (1/33, 3%) presenting TDP-43 pathology, respectively. Significant differences in the prevalence of TDP-43 lesions were noted between disease versus normal brains (P < 0.001) as well as demented versus non-demented brains (P < 0.001). Statistical analyses revealed a positive relationship between TDP-43 lesions and several clinical and pathological parameters in these disorders suggesting the TDP-43 pathology may have co-morbid effects in LB diseases. This study expands the concept of TDP-43 proteinopathies by implicating TDP-43 lesions in mechanisms of neurodegeneration in LB disorders.

0 Followers
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathological aggregates of phosphorylated TDP-43 characterize amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), two devastating groups of neurodegenerative disease. Kinase hyperactivity may be a consistent feature of ALS and FTLD-TDP, as phosphorylated TDP-43 is not observed in the absence of neurodegeneration. By examining changes in TDP-43 phosphorylation state, we have identified kinases controlling TDP-43 phosphorylation in a C. elegans model of ALS. In this kinome-wide survey, we identified homologs of the tau tubulin kinases 1 and 2 (TTBK1 and TTBK2), which were also identified in a prior screen for kinase modifiers of TDP-43 behavioral phenotypes. Using refined methodology, we demonstrate TTBK1 and TTBK2 directly phosphorylate TDP-43 in vitro and promote TDP-43 phosphorylation in mammalian cultured cells. TTBK1/2 overexpression drives phosphorylation and relocalization of TDP-43 from the nucleus to cytoplasmic inclusions reminiscent of neuropathologic changes in disease states. Furthermore, protein levels of TTBK1 and TTBK2 are increased in frontal cortex of FTLD-TDP patients, and TTBK1 and TTBK2 co-localize with TDP-43 inclusions in ALS spinal cord. These kinases may represent attractive targets for therapeutic intervention for TDP-43 proteinopathies such as ALS and FTLD-TDP.
    PLoS Genetics 12/2014; 10(12):e1004803. DOI:10.1371/journal.pgen.1004803 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Frontotemporal lobar degeneration (FTLD) comprises two main classes of neurodegenerative diseases characterized by neuronal/glial proteinaceous inclusions (i.e., proteinopathies) including tauopathies (i.e., FTLD-Tau) and TDP-43 proteinopathies (i.e., FTLD-TDP) while other very rare forms of FTLD are known such as FTLD with FUS pathology (FTLD-FUS). This review focuses mainly on FTLD-Tau and FLTD-TDP, which may present as several clinical syndromes: a behavioral/dysexecutive syndrome (behavioral variant frontotemporal dementia); language disorders (primary progressive aphasia variants); and motor disorders (amyotrophic lateral sclerosis, corticobasal syndrome, progressive supranuclear palsy syndrome). There is considerable heterogeneity in clinical presentations of underlying neuropathology and current clinical criteria do not reliably predict underlying proteinopathies ante-mortem. In contrast, molecular etiologies of hereditary FTLD are consistently associated with specific proteinopathies. These include MAPT mutations with FTLD-Tau and GRN, C9orf72, VCP and TARDBP with FTLD-TDP. The last decade has seen a rapid expansion in our knowledge of the molecular pathologies associated with this clinically and neuropathologically heterogeneous group of FTLD diseases. Moreover, in view of current limitations to reliably diagnose specific FTLD neuropathologies prior to autopsy, we summarize the current state of the science in FTLD biomarker research including neuroimaging, biofluid and genetic analyses. We propose that combining several of these biomarker modalities will improve diagnostic specificity in FTLD through a personalized medicine approach. The goals of these efforts are to enhance power for clinical trials focused on slowing or preventing progression of spread of tau, TDP-43 and other FTLD-associated pathologies and work toward the goal of defining clinical endophenotypes of FTD.
    Acta Neuropathologica 12/2014; 129(4). DOI:10.1007/s00401-014-1380-1 · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the search for therapeutic modifiers, frontotemporal dementia (FTD) has traditionally been overshadowed by other conditions such as Alzheimer's disease (AD). A clinically and pathologically diverse condition, FTD has been galvanized by a number of recent discoveries such as novel genetic variants in familial and sporadic forms of disease and the identification of TAR DNA binding protein of 43 kDa (TDP-43) as the defining constituent of inclusions in more than half of cases. In combination with an ever-expanding knowledge of the function and dysfunction of tau—a protein which is pathologically aggregated in the majority of the remaining cases—there exists a greater understanding of FTD than ever before. These advances may indicate potential approaches for the development of hypothetical therapeutics, but FTD remains highly complex and the roles of tau and TDP-43 in neurodegeneration are still wholly unclear. Here the challenges facing potential therapeutic strategies are discussed, which include sufficiently accurate disease diagnosis and sophisticated technology to deliver effective therapies.
    Frontiers in Aging Neuroscience 08/2014; 6. DOI:10.3389/fnagi.2014.00204 · 2.84 Impact Factor

Full-text (2 Sources)

Download
87 Downloads
Available from
Jun 2, 2014