Article

Rapid recontamination with MRSA of the environment of an intensive care unit after decontamination with hydrogen peroxide vapour

University of Birmingham, Birmingham, England, United Kingdom
Journal of Hospital Infection (Impact Factor: 2.78). 09/2007; 66(4):360-8. DOI: 10.1016/j.jhin.2007.05.009
Source: PubMed

ABSTRACT Meticillin-resistant Staphylococcus aureus (MRSA) persists in the hospital environment and conventional cleaning procedures do not necessarily eliminate contamination. A prospective study was conducted on an intensive care unit to establish the level of environmental contamination with MRSA, assess the effectiveness of hydrogen peroxide vapour (HPV) decontamination and determine the rate of environmental recontamination. MRSA was isolated from 11.2% of environmental sites in the three months preceding the use of HPV and epidemiological typing revealed that the types circulating within the environment were similar to those colonising patients. After patient discharge and terminal cleaning using conventional methods, MRSA was isolated from five sites (17.2%). After HPV decontamination but before the readmission of patients, MRSA was not isolated from the environment. Twenty-four hours after readmitting patients, including two colonized with MRSA, the organism was isolated from five sites. The strains were indistinguishable from a strain with which a patient was colonized but were not all confined to the immediate vicinity of the colonized patient. In the eight weeks after the use of HPV, the environment was sampled on a weekly basis and MRSA was isolated from 16.3% sites. Hydrogen peroxide vapour is effective in eliminating bacteria from the environment but the rapid rate of recontamination suggests that it is not an effective means of maintaining low levels of environmental contamination in an open-plan intensive care unit.

0 Bookmarks
 · 
79 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enzyme-based systems represent a user- and environmentally-friendly alternative to current corrosive and/or toxic decontamination technologies used for microbial decontamination. Herein an easily deployable enzyme-nanosupport hybrid system was developed for in situ generation of hypochlorous acid (HOG), a strong decontaminant. The user-controlled strategy allowed co-immobilization of two different enzymes at a nanosupport interface and decontaminant generation through a chain reaction. For this, glucose oxidase was used as the working enzyme and co-immobilized onto multi-walled carbon nanotubes along with chloroperoxidase. Our hypothesis was that hydrogen peroxide produced at the nanosupport interface through the glucose oxidase enzymatic reaction can further be used as substrate by the co-immobilized CPO to convert (Cl-) into HOC. The chemistry of the immobilization method, as well as the enzyme loading, activity, kinetics and enzyme stability at the nanointerface were evaluated. The multi-enzyme system was found to be able to initiate and propagate the chain reaction resulting in decontaminant production. The strong capability of HOCl generation can be viewed as an important first step toward creating self-sustainable microbial decontamination coatings to be used against various pathogens such as bacteria and spores.
    PROCESS BIOCHEMISTRY 09/2013; 48(9):1355-1360. DOI:10.1016/j.procbio.2013.06.011 · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Decontamination in Hospitals and Healthcare brings an understanding of decontamination practices and the development of technologies for cleaning and control of infection to a wide audience interested in public health, including healthcare specialists, scientists, students or patients. Part one highlights the importance and history of decontamination in hospitals and healthcare before exploring the role of standards in decontamination, infection control in Europe, and future trends in the area. Part two focuses on decontamination practices in hospitals and healthcare. It considers the role of the nurse in decontamination, the issues of microbial biofilm in waterlines, control of waterborne microorganisms, and the use of gaseous decontamination technologies. Further chapters explore decontamination of prions, the use of protective clothing, no-touch automated room disinfection systems, and controlling the presence of microorganisms in hospitals. Part three discusses practices for decontamination and sterilization of surgical instruments and endoscopes. These chapters examine a range of guidance documents, including the choice framework for local policy and procedures for decontamination of surgical instruments, as well as novel technologies for cleaning and detection of contamination. Decontamination in Hospitals and Healthcare provides a reference source on decontamination for public health professionals and students concerned with healthcare. It is particularly useful for scientists in microbiology and disinfection/decontamination laboratories, healthcare workers who use disinfectants, students in microbiology, clinicians, members of the Institute of Decontamination Sciences/Central Sterilising Club, and those employed in the Central Sterile Services departments of healthcare facilities.
    Decontamination in Hospitals and Healthcare, Edited by Walker JT, 01/2014: chapter A guide to 'no-touch' automated room disinfection systems; Woodhead Publishing., ISBN: 9780857096692
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionThe primary objective of this study was to determine the efficiency of hydrogen peroxide (H2O2) techniques in disinfection of ICU rooms contaminated with multidrug-resistant organisms (MDRO) after patient discharge. Secondary objectives included comparison of the efficiency of a vaporizator (HPV, Bioquell®) and an aerosolizer using H2O2, and peracetic acid (aHPP, Anios®) in MDRO environmental disinfection, and assessment of toxicity of these techniques.Methods This prospective cross-over study was conducted in five medical and surgical ICUs located in one University hospital, during a 12-week period. Routine terminal cleaning was followed by H2O2 disinfection. A total of 24 environmental bacteriological samplings were collected per room, from eight frequently touched surfaces, at three time-points: after patient discharge (T0), after terminal cleaning (T1) and after H2O2 disinfection (T2).ResultsIn total 182 rooms were studied, including 89 (49%) disinfected with aHPP and 93 (51%) with HPV. At T0, 15/182 (8%) rooms were contaminated with at least 1 MDRO (extended spectrum ß¿lactamase-producing Gram-negative bacilli 50%, imipenem resistant Acinetobacter baumannii 29%, methicillin-resistant Staphylococcus aureus 17%, and Pseudomonas aeruginosa resistant to ceftazidime or imipenem 4%). Routine terminal cleaning reduced environmental bacterial load (P <0.001) without efficiency on MDRO (15/182 (8%) rooms at T0 versus 11/182 (6%) at T1; P¿=¿0.371). H2O2 technologies were efficient for environmental MDRO decontamination (6% of rooms contaminated with MDRO at T1 versus 0.5% at T2, P¿=¿0.004). Patient characteristics were similar in aHPP and HPV groups. No significant difference was found between aHPP and HPV regarding the rate of rooms contaminated with MDRO at T2 (P¿=¿0.313). 42% of room occupants were MDRO carriers. The highest rate of rooms contaminated with MDRO was found in rooms where patients stayed for a longer period of time, and where a patient with MDRO was hospitalized. The residual concentration of H2O2 appears to be higher using aHPP, compared with HPV.ConclusionsH2O2 treatment is efficient in reducing MDRO contaminated rooms in the ICU. No significant difference was found between aHPP and HPV regarding their disinfection efficiency.
    Critical care (London, England) 02/2015; 19(1):30. DOI:10.1186/s13054-015-0752-9 · 5.04 Impact Factor

Preview

Download
1 Download
Available from