Article

msBayes: Pipeline for testing comparative phylogeographic histories using hierarchical approximate Bayesian computation

Biology Department, Queens College, CUNY, Flushing, NY 11367-1597, USA.
BMC Bioinformatics (Impact Factor: 2.67). 02/2007; 8(1):268. DOI: 10.1186/1471-2105-8-268
Source: PubMed

ABSTRACT Although testing for simultaneous divergence (vicariance) across different population-pairs that span the same barrier to gene flow is of central importance to evolutionary biology, researchers often equate the gene tree and population/species tree thereby ignoring stochastic coalescent variance in their conclusions of temporal incongruence. In contrast to other available phylogeographic software packages, msBayes is the only one that analyses data from multiple species/population pairs under a hierarchical model.
msBayes employs approximate Bayesian computation (ABC) under a hierarchical coalescent model to test for simultaneous divergence (TSD) in multiple co-distributed population-pairs. Simultaneous isolation is tested by estimating three hyper-parameters that characterize the degree of variability in divergence times across co-distributed population pairs while allowing for variation in various within population-pair demographic parameters (sub-parameters) that can affect the coalescent. msBayes is a software package consisting of several C and R programs that are run with a Perl "front-end".
The method reasonably distinguishes simultaneous isolation from temporal incongruence in the divergence of co-distributed population pairs, even with sparse sampling of individuals. Because the estimate step is decoupled from the simulation step, one can rapidly evaluate different ABC acceptance/rejection conditions and the choice of summary statistics. Given the complex and idiosyncratic nature of testing multi-species biogeographic hypotheses, we envision msBayes as a powerful and flexible tool for tackling a wide array of difficult research questions that use population genetic data from multiple co-distributed species. The msBayes pipeline is available for download at http://msbayes.sourceforge.net/ under an open source license (GNU Public License). The msBayes pipeline is comprised of several C and R programs that are run with a Perl "front-end" and runs on Linux, Mac OS-X, and most POSIX systems. Although the current implementation is for a single locus per species-pair, future implementations will allow analysis of multi-loci data per species pair.

Download full-text

Full-text

Available from: Michael Hickerson, Jul 06, 2015
2 Followers
 · 
177 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study we investigated the relative contribution of geographic barriers and Pleistocene refuges in the diversification of the Rhinella crucifer species complex, a group of endemic toads with a widespread distribution in the Brazilian Atlantic Forest (AF). We used intensive sampling and multilocus DNA sequence data to compare nucleotide diversity between refuge and non-refuge areas, investigate regional demographic patterns, estimate demographic parameters related to genetic breaks, and test refuge versus barrier scenarios of diversification using approximate Bayesian computation. We did not find higher levels of genetic diversity in putative refuge areas, either at regional or biome scale. Rather, the demographic history of the species complex supports regional differences with moderate population growth in the north and central regions, and stability in southern AF. Genetic breaks were dated to the Plio-Pleistocene; however, our analyses rejected the role of refuges in creating a northern and central divergence, supporting a recent colonization scenario at a smaller scale within the central AF. Overall our data rule out massive climatically driven fragmentation and large-scale recolonization events for populations across the biome. We confirmed the importance of geographic barriers in creating main divergences and underscored the importance of searching for cryptic discontinuities in the landscape. Comparison of our results with those of other AF taxa indicates organismal specific responses to moderate shifts in habitat and that multiple refuges may constitute a more realistic model for diversification of Atlantic Forest biota.This article is protected by copyright. All rights reserved.
    Molecular Ecology 11/2014; 23(24). DOI:10.1111/mec.12986 · 5.84 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prior specification is an essential component of parameter estimation and model comparison in Approximate Bayesian computation (ABC). Oaks et al. present a simulation-based power analysis of msBayes and conclude that msBayes has low power to detect genuinely random divergence times across taxa, and suggest the cause is Lindley’s paradox. Although the predictions are similar, we show that their findings are more fundamentally explained by insufficient prior sampling that arises with poorly chosen wide priors that critically undersample nonsimultaneous divergence histories of high likelihood. In a reanalysis of their data on Philippine Island vertebrates, we show how this problem can be circumvented by expanding upon a previously developed procedure that accommodates uncertainty in prior selection using Bayesian model averaging. When these procedures are used, msBayes supports recent divergences without support for synchronous divergence in the Oaks et al. data and we further present a simulation analysis that demonstrates that msBayes can have high power to detect asynchronous divergence under narrower priors for divergence time. Our findings highlight the need for exploration of plausible parameter space and prior sampling efficiency for ABC samplers in high dimensions. We discuss potential improvements to msBayes and conclude that when used appropriately with model averaging, msBayes remains an effective and powerful tool.
    01/2014; 68(1):284-294. DOI:10.1111/evo.12241/full