Article

SanM catalyzes the formation of 4-pyridyl-2-oxo-4-hydroxyisovalerate in nikkomycin biosynthesis by interacting with SanN.

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 10/2007; 361(1):196-201. DOI: 10.1016/j.bbrc.2007.07.016
Source: PubMed

ABSTRACT Nikkomycins are peptidyl nucleoside antibiotics with potent activities against phytopathogenic and human pathogenic fungi. The sanM and sanN genes are required for the nikkomycin biosynthesis of Streptomyces ansochromogenes. In the present study, interaction between SanM and SanN was identified by yeast two-hybrid and co-immunoprecipitation assays. Moreover, SanM and SanN were heterologously expressed and purified. Further biochemical assay demonstrated that the SanM-SanN interaction is essential for SanM aldolase activity but not for SanN dehydrogenase activity. SanM converts piconaldehyde and 2-oxobutyrate to 4-pyridyl-2-oxo-4-hydroxyisovalerate in nikkomycin biosynthesis by interacting with SanN. Steady state kinetics analysis revealed that K(m) and k(cat)/K(m) of SanM are 123.2 microM and 11.4 mM(-1)s(-1) for picolinaldehyde, while 335.6 microM and 4.0 mM(-1)s(-1) for 2-oxobutyrate, respectively. However, SanN as a dehydrogenase is independent of SanM.

0 Bookmarks
 · 
81 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, a recombinant trans-o-hydroxybenzylidenepyruvate hydratase-aldolase (tHBP-HA) of Pseudomonas fluorescens N3 was used as a new catalyst for aldol condensation reactions. The reaction of some aldehydes with a different electronic activation catalyzed by tHBP-HA is presented and discussed together with some hints on the product structure. The enzyme is strictly pyruvate-dependent but uses different aldehydes as acceptors. The structure of the products is highly dependent on the electronic characteristics of the aldehyde. The results are interesting for both their synthetic importance and the mechanism of the formation of the products. Not only the products obtained and the recognition power are reported, but also some characteristics of its mechanism are analyzed. The results clearly show that the enzyme is efficiently prepared, purified, and stored, that it recognizes many different substrates, and that the products depend on the substrate electronic nature.
    Applied biochemistry and biotechnology 05/2013; · 1.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The term "adaptation" in the behavioral sciences refers to the ability of living tissue to adjust to the demands of environmental changes. This is accomplished in a variety of ways. For example, the sense organs become less sensitive when stimulated and more sensitive when stimulation is removed. Long-term effects of adaptation, for example to distracting noises, are observed in the absence of known physiological changes. The perceptual system is able to extract from the large quantity and quality of stimuli impinging upon it only those which are of interest and relevance. The prime mechanism of adaptation, however, is the ability of the human operator to adjust his responses to novel situations, i.e., learning It is the redundancy of the human operator which is his most valuable asset and prescribes the inclusion of the human in complex systems in spite of the concomitant demands for life support. The papers in the symposium are designed to illustrate several ways in which the human operator exhibits adaptation.
    01/1969;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biocatalytic carbon-carbon bond formation by means of aldolases offers an exceptionally stereoselective and green tool for this strategic reaction in synthetic organic chemistry. Recent developments have shown that aldolases are particularly suitable catalysts for asymmetric framework construction and preparation of innovative molecules, which are valuable for investigations in drug discovery. Finding novel carboligases with unprecedented activities and engineering those available for improved substrate tolerance and stereoselectivity towards new synthetic challenges are fostering the advances in this field. Extensive knowledge of the precise reaction mechanism and the enzyme-substrate interactions arising from biochemical and structural studies are leading to the development of novel catalysts by rational strategies, as well as to de novo computational design of enzymes. Besides, a number of industrially-oriented processes with aldolases have been developed towards the production of drug precursors and dietary commodities.
    Advanced Synthesis & Catalysis 08/2011; 353(13):2263 - 2283. · 5.54 Impact Factor