Article

Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits.

Unità Operativa Geriatria, Istituto per la Patologia Endocrina e Metabolica, Rome, Italy.
PLoS Genetics (Impact Factor: 8.17). 08/2007; 3(7):e115. DOI: 10.1371/journal.pgen.0030115
Source: PubMed

ABSTRACT The obesity epidemic is responsible for a substantial economic burden in developed countries and is a major risk factor for type 2 diabetes and cardiovascular disease. The disease is the result not only of several environmental risk factors, but also of genetic predisposition. To take advantage of recent advances in gene-mapping technology, we executed a genome-wide association scan to identify genetic variants associated with obesity-related quantitative traits in the genetically isolated population of Sardinia. Initial analysis suggested that several SNPs in the FTO and PFKP genes were associated with increased BMI, hip circumference, and weight. Within the FTO gene, rs9930506 showed the strongest association with BMI (p = 8.6 x10(-7)), hip circumference (p = 3.4 x 10(-8)), and weight (p = 9.1 x 10(-7)). In Sardinia, homozygotes for the rare "G" allele of this SNP (minor allele frequency = 0.46) were 1.3 BMI units heavier than homozygotes for the common "A" allele. Within the PFKP gene, rs6602024 showed very strong association with BMI (p = 4.9 x 10(-6)). Homozygotes for the rare "A" allele of this SNP (minor allele frequency = 0.12) were 1.8 BMI units heavier than homozygotes for the common "G" allele. To replicate our findings, we genotyped these two SNPs in the GenNet study. In European Americans (N = 1,496) and in Hispanic Americans (N = 839), we replicated significant association between rs9930506 in the FTO gene and BMI (p-value for meta-analysis of European American and Hispanic American follow-up samples, p = 0.001), weight (p = 0.001), and hip circumference (p = 0.0005). We did not replicate association between rs6602024 and obesity-related traits in the GenNet sample, although we found that in European Americans, Hispanic Americans, and African Americans, homozygotes for the rare "A" allele were, on average, 1.0-3.0 BMI units heavier than homozygotes for the more common "G" allele. In summary, we have completed a whole genome-association scan for three obesity-related quantitative traits and report that common genetic variants in the FTO gene are associated with substantial changes in BMI, hip circumference, and body weight. These changes could have a significant impact on the risk of obesity-related morbidity in the general population.

0 Bookmarks
 · 
226 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fat mass and obesity-associated (FTO) gene was found to be associated with energy homeostasis in mammals, yet the function of chicken FTO is less clear. In this study, chicken embryo fibroblast cells (DF-1) were transiently transfected to over-express (FTO(+)) or to knockdown (FTO(-)) the chicken FTO gene and were used for the functional analysis. FTO expression was significantly augmented in FTO(+) cells while depressed in FTO(-) cells (P<0.05). FTO(+) cells had significantly lower glucose yet higher lactic acid (LD) concentrations (P<0.05) in the culture media, which was associated with significantly up-regulated (P<0.05) mRNA expression of the rate-limiting gluconeogenic enzymes, glucose-6-phosphatase (G6PC) and the phosphoenolpyruvate carboxykinase-mitochondrial (PEPCK-m). The protein content and enzyme activity of G6PC were also significantly higher (P<0.05) in FTO(+) cells. Moreover, CCAAT/enhancer-binding protein-beta (C/EBP-beta) and cAMP responsive element binding protein 1 (CREB1), which were found to transcriptionally regulate the expression of G6PC, were increased at the level of both mRNA (P<0.05) and protein (P<0.05) in FTO(+) cells. ChIP analysis revealed significantly higher (P<0.05) binding of C/EBP-beta and phospho-CREB1 to G6PC gene promoter in FTO(+) cells. In addition, the interaction of FTO and C/EBP-beta was significantly enhanced (P<0.05) in FTO(+) cells. Opposite changes in G6PC expression and regulation were observed in FTO(-) cells. Our results indicate that chicken FTO regulates gluconeogenesis in DF-1 cells through enhanced transcriptional regulation of G6PC gene by C/EBP-beta and phospho-CREB1. Copyright © 2014 Elsevier Inc. All rights reserved.
    Comparative Biochemistry and Physiology - Part A Molecular & Integrative Physiology 10/2014; 179C:149-156. · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The diversity of regulatory genetic variants and their mechanisms of action reflect the complexity and context-specificity of gene regulation. Regulatory variants are important in human disease and defining such variants and establishing mechanism is crucial to the interpretation of disease-association studies. This review describes approaches for identifying and functionally characterizing regulatory variants, illustrated using examples from common diseases. Insights from recent advances in resolving the functional epigenomic regulatory landscape in which variants act are highlighted, showing how this has enabled functional annotation of variants and the generation of hypotheses about mechanism of action. The utility of quantitative trait mapping at the transcript, protein and metabolite level to define association of specific genes with particular variants and further inform disease associations are reviewed. Establishing mechanism of action is an essential step in resolving functional regulatory variants, and this review describes how this is being facilitated by new methods for analyzing allele-specific expression, mapping chromatin interactions and advances in genome editing. Finally, integrative approaches are discussed together with examples highlighting how defining the mechanism of action of regulatory variants and identifying specific modulated genes can maximize the translational utility of genome-wide association studies to understand the pathogenesis of diseases and discover new drug targets or opportunities to repurpose existing drugs to treat them.
    Genome Medicine 01/2014; 6(10):92. · 4.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity prevalence has increased in recent years. Lifestyle change fuels obesity, but genetic factors cause more than 50% of average variations in obesity. The advent of genome-wide association studies (GWAS) has hastened the progress of polygenic obesity research. As of this writing, more than 73 obesity susceptibility loci have been identified in ethnic groups through GWAS. The identified loci explain only 2% to 4% of obesity heritability, thereby indicating that a large proportion of loci remain undiscovered. Thus, the next step is to identify and confirm novel loci, which may exhibit smaller effects and lower allele frequencies than established loci. However, achieving these tasks has been difficult for researchers. GWAS help researchers discover the causal loci. Moreover, numerous biological studies have been performed on the polygenic effects on obesity, such as studies on fat mass- and obesity-associated gene (FTO), but the role of these polygenic effects in the mechanism of obesity remains unclear. Thus, obesity-causing variations should be identified, and insights into the biology of polygenic effects on obesity are needed.
    Frontiers of medicine. 12/2014;

Full-text (3 Sources)

Download
45 Downloads
Available from
May 20, 2014