Genome-Wide Association Scan Shows Genetic Variants in the FTO Gene Are Associated with Obesity-Related Traits

Unità Operativa Geriatria, Istituto per la Patologia Endocrina e Metabolica, Rome, Italy.
PLoS Genetics (Impact Factor: 7.53). 08/2007; 3(7):e115. DOI: 10.1371/journal.pgen.0030115
Source: PubMed


The obesity epidemic is responsible for a substantial economic burden in developed countries and is a major risk factor for type 2 diabetes and cardiovascular disease. The disease is the result not only of several environmental risk factors, but also of genetic predisposition. To take advantage of recent advances in gene-mapping technology, we executed a genome-wide association scan to identify genetic variants associated with obesity-related quantitative traits in the genetically isolated population of Sardinia. Initial analysis suggested that several SNPs in the FTO and PFKP genes were associated with increased BMI, hip circumference, and weight. Within the FTO gene, rs9930506 showed the strongest association with BMI (p = 8.6 x10(-7)), hip circumference (p = 3.4 x 10(-8)), and weight (p = 9.1 x 10(-7)). In Sardinia, homozygotes for the rare "G" allele of this SNP (minor allele frequency = 0.46) were 1.3 BMI units heavier than homozygotes for the common "A" allele. Within the PFKP gene, rs6602024 showed very strong association with BMI (p = 4.9 x 10(-6)). Homozygotes for the rare "A" allele of this SNP (minor allele frequency = 0.12) were 1.8 BMI units heavier than homozygotes for the common "G" allele. To replicate our findings, we genotyped these two SNPs in the GenNet study. In European Americans (N = 1,496) and in Hispanic Americans (N = 839), we replicated significant association between rs9930506 in the FTO gene and BMI (p-value for meta-analysis of European American and Hispanic American follow-up samples, p = 0.001), weight (p = 0.001), and hip circumference (p = 0.0005). We did not replicate association between rs6602024 and obesity-related traits in the GenNet sample, although we found that in European Americans, Hispanic Americans, and African Americans, homozygotes for the rare "A" allele were, on average, 1.0-3.0 BMI units heavier than homozygotes for the more common "G" allele. In summary, we have completed a whole genome-association scan for three obesity-related quantitative traits and report that common genetic variants in the FTO gene are associated with substantial changes in BMI, hip circumference, and body weight. These changes could have a significant impact on the risk of obesity-related morbidity in the general population.

Download full-text


Available from: Fabio Busonero,
  • Source
    • "In parallel , three independent studies found an obesity - sus - ceptibility gene that was renamed FTO ( fat mass and obesity - associated protein ) ( Dina et al . , 2007 ; Frayling et al . , 2007 ; Scuteri et al . , 2007 ) . Frayling et al . ( 2007 ) initially discovered an association signal at FTO with T2D that disappeared after adjust - ment for BMI , suggesting an indirect effect of FTO on T2D risk , which was actually mediated by the excess of adiposity . Although all these GWAS were performed in unrelated individ - uals , an Icelandic GWAS took in"
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes (T2D) had long been referred to as the "geneticist's nightmare." Genome-wide association studies have fully confirmed the polygenic nature of T2D, demonstrating the role of many genes in T2D risk. The increasingly busier picture of T2D genetics is quite difficult to understand for the diabetes research community, which can create misunderstandings with geneticists, and can eventually limit both basic research and translational outcomes of these genetic discoveries. The present review wishes to lift the fog around genetics of T2D with the hope that it will foster integrated diabetes modeling approaches from genetic defects to personalized medicine. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell Metabolism 01/2015; 21(3). DOI:10.1016/j.cmet.2014.12.020 · 17.57 Impact Factor
  • Source
    • "Zakrojony na szeroką skalę projekt badawczy GWAS (genome-wide association study), którego celem jest identyfikacja genetycznych czynników ryzyka powszechnie występujących chorób, przyczynił się do wykazania związku między otyłością a obecnością mononukleotydowych polimorfizmów (single nucleotide polimorphisms, SNPs) w genie FTO (Fat Mass and Obesity) [17] [23] [68]. Gen FTO ulega szerokiej ekspresji, obserwowanej najsilniej w mózgu, a zwłaszcza w podwzgórzu [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The number of overweight and obese people is increasing at an alarming rate, especially in the developed and developing countries. Obesity is a major risk factor for diabetes, cardiovascular disease, and cancer, and in consequence for premature death. The development of obesity results from the interplay of both genetic and environmental factors, which include sedentary life style and abnormal eating habits. In the past few years a number of events accompanying obesity, affecting expression of genes which are not directly connected with the DNA base sequence (e.g. epigenetic changes), have been described. Epigenetic processes include DNA methylation, histone modifications such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, as well as non-coding micro-RNA (miRNA) synthesis. In this review, the known changes in the profile of DNA methylation as a factor affecting obesity and its complications are described.
    Postępy Higieny i Medycyny Doświadczalnej (Advances in Hygiene and Experimental Medicine) 11/2014; 68:1383-1391. · 0.57 Impact Factor
  • Source
    • "The PFPK gene (phosphofructokinase, platelet) is a key regulatory enzyme in glycolysis. In the first GWAS presented on obesity, this gene was found to be associated, but did not get validated in the replication stage [53]. However, differential gene expression in the visceral adipose tissue shows differential expression of the PFPK gene in obese vs. lean individuals [54]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model. Methods: We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. Results: WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P < 0.001). Functional annotation identified pathways enlightening the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E-7), and immune-related complications (e.g. Natural killer cell mediated cytotoxity, P = 3.8E-5; B cell receptor signaling pathway, P = 7.2E-5). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and 34.58). Moreover, detection of differentially connected genes identified various genes previously identified to be associated with obesity in humans and rodents, e.g. CSF1R and MARC2. Conclusions: To our knowledge, this is the first study to apply systems biology approaches using porcine adipose tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex networks, pathways, candidate and regulatory genes related to obesity, confirming the complexity of obesity and its association with immune-related disorders and osteoporosis.
    BMC Medical Genomics 09/2014; 7(1):57. DOI:10.1186/1755-8794-7-57 · 2.87 Impact Factor
Show more