Anaerobic regulation of Shigella flexneri virulence: ArcA regulates Fur and iron acquisition genes.

The University of Texas at Austin, Section .
Journal of Bacteriology (Impact Factor: 2.69). 11/2007; 189(19):6957-67. DOI: 10.1128/JB.00621-07
Source: PubMed

ABSTRACT Invasion and plaque formation in epithelial monolayers are routinely used to assess the virulence of Shigella flexneri, a causative agent of dysentery. A modified plaque assay was developed to identify factors contributing to the virulence of S. flexneri under the anaerobic conditions present in the colon. This assay demonstrated the importance of the ferrous iron transport system Feo, as well as the global transcription factors Fur, ArcA, and Fnr, for Shigella plaque formation in anoxic environments. Transcriptional analyses of S. flexneri iron transport genes indicated that anaerobic conditions activated feoABC while repressing genes encoding two other iron transport systems, the ABC transporter Sit and the Iuc/Iut aerobactin siderophore synthesis and transport system. The anaerobic transcription factors ArcA and Fnr activated expression of feoABC, while ArcA repressed iucABCD iutA. Transcription of fur, encoding the iron-responsive transcriptional repressor of bacterial iron acquisition, was also repressed anaerobically in an ArcA-dependent manner.


Available from: Shelley M Payne, Jul 16, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Shigella flexneri two-component regulatory systems (TCRS) are responsible for sensing changes in environmental conditions and regulating gene expression accordingly. We examined twelve TCRS that were previously uncharacterized for potential roles in S. flexneri growth within the eukaryotic intracellular environment. We demonstrate that the TCRS EvgSA, NtrBC, and RstBA systems are required for wild-type plaque formation in cultured epithelial cells. The phenotype of the NtrBC mutant depended in part on the Nac transcriptional regulator. Microarray analysis was performed to identify S. flexneri genes differentially regulated by the NtrBC system or Nac in the intracellular environment. Combined, this study contributes to our understanding of the transcriptional regulation necessary for Shigella to effectively adapt to the mammalian host cell.
    Journal of bacteriology 05/2014; 196(14). DOI:10.1128/JB.01613-14 · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small intestinal Paneth cells secrete α-defensin peptides, termed cryptdins (Crps) in mice, into the intestinal lumen, where they confer immunity to oral infections and define the composition of the ileal microbiota. In these studies, facultative bacteria maintained under aerobic or anaerobic conditions displayed differential sensitivities to mouse α-defensins under in vitro assay conditions. Regardless of oxygenation, Crps 2 and 3 had robust and similar bactericidal activities against S. Typhimurium and S. flexneri, but Crp4 activity against S. flexneri was attenuated in the absence of oxygen. Anaerobic bacteria varied in their susceptibility to Crps 2-4, with Crp4 showing less activity than Crps 2 and 3 against Enterococcus faecalis, and Bacteroides fragilis in anaerobic assays, but Fusobacterium necrophorum was killed only by Crp4 and not by Crps 2 and 3. The influence of anaerobiosis in modulating Crp bactericidal activities in vitro suggests that α-defensin effects on the enteric microbiota may be subject to regulation by local oxygen tension.
    12/2014; 3(4):493-508. DOI:10.3390/antibiotics3040493
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Shigella flexneri is an important human pathogen that has to adapt to the anaerobic environment in the gastrointestinal tract to cause dysentery. To define the influence of anaerobiosis on the virulence of Shigella, we performed deep RNA sequencing to identify transcriptomic differences that are induced by anaerobiosis and modulated by the anaerobic Fumarate and Nitrate Reduction regulator, FNR. Results We found that 528 chromosomal genes were differentially expressed in response to anaerobic conditions; of these, 228 genes were also influenced by FNR. Genes that were up-regulated in anaerobic conditions are involved in carbon transport and metabolism (e.g. ptsG, manX, murQ, cysP, cra), DNA topology and regulation (e.g. ygiP, stpA, hns), host interactions (e.g. yciD, nmpC, slyB, gapA, shf, msbB) and survival within the gastrointestinal tract (e.g. shiA, ospI, adiY, cysP). Interestingly, there was a marked effect of available oxygen on genes involved in Type III secretion system (T3SS), which is required for host cell invasion and pathogenesis. These genes, located on the large Shigella virulence plasmid, were down regulated in anaerobiosis in an FNR-dependent manner. We also confirmed anaerobic induction of csrB and csrC small RNAs in an FNR-independent manner. Conclusions Anaerobiosis promotes survival and adaption strategies of Shigella, while modulating virulence plasmid genes involved in T3SS-mediated host cell invasion. The influence of FNR on this process is more extensive than previously appreciated, although aside from the virulence plasmid, this transcriptional regulator does not govern expression of genes on other horizontally acquired sequences on the chromosome such as pathogenicity islands.
    BMC Genomics 06/2014; 15(1):438. DOI:10.1186/1471-2164-15-438 · 4.04 Impact Factor