Article

C-terminal truncations in human 3'-5' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy.

Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Nature Genetics (Impact Factor: 29.65). 10/2007; 39(9):1068-70. DOI: 10.1038/ng2082
Source: PubMed

ABSTRACT Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle-age onset. In nine families, we identified heterozygous C-terminal frameshift mutations in TREX1, which encodes a 3'-5' exonuclease. These truncated proteins retain exonuclease activity but lose normal perinuclear localization. These data have implications for the maintenance of vascular integrity in the degenerative cerebral microangiopathies leading to stroke and dementias.

0 Followers
 · 
209 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerebroretinal vasculopathy (CRV) and the related diseases hereditary endotheliopathy with retinopathy, neuropathy, and stroke (HERNS), hereditary vascular retinopathy (HVR) and hereditary systemic angiopathy (HSA) [subsequently combined as retinovasculopathy and cerebral leukodystrophy (RVCL)] are devastating autosomal-dominant disorders of early to middle-age onset presenting with a core constellation of neurologic and ophthalmologic findings. This family of diseases is linked by specific mutations targeting a core region of a gene. Frameshift mutations in the carboxyl-terminus of three prime exonuclease-1 (TREX1), the major mammalian 3′ to 5′ DNA exonuclease on chromosome 3p21.1-p21.3, result in a systemic vasculopathy that follows an approximately 5-year course leading to death secondary to progressive neurologic decline, with sometimes a more protracted course in HERNS. Neuropathological features include a fibrinoid vascular necrosis or thickened hyalinized vessels associated with white matter ischemia, necrosis and often striking dystrophic calcifications. Ultrastructural studies of the vessel walls often demonstrate unusual multilaminated basement membranes.
    Brain Pathology 09/2014; 24(5). DOI:10.1111/bpa.12178 · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebral small vessel disease (SVD) is an important cause of stroke and cognitive impairment among the elderly and is a more frequent cause of stroke in Asia than in the US or Europe. Although traditional risk factors such as hypertension or diabetes mellitus are important in the development of cerebral SVD, the exact pathogenesis is still uncertain. Both, twin and family history studies suggest heritability of sporadic cerebral SVD, while the candidate gene study and the genome-wide association study (GWAS) are mainly used in genetic research. Robust associations between the candidate genes and occurrence of various features of sporadic cerebral SVD, such as lacunar infarction, intracerebral hemorrhage, or white matter hyperintensities, have not yet been elucidated. GWAS, a relatively new technique, overcomes several shortcomings of previous genetic techniques, enabling the detection of several important genetic loci associated with cerebral SVD. In addition to the more common, sporadic cerebral SVD, several single-gene disorders causing cerebral SVD have been identified. The number of reported cases is increasing as the clinical features become clear and diagnostic examinations are more readily available. These include cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, COL4A1-related cerebral SVD, autosomal dominant retinal vasculopathy with cerebral leukodystrophy, and Fabry disease. These rare single-gene disorders are expected to play a crucial role in our understanding of cerebral SVD pathogenesis by providing animal models for the identification of cellular, molecular, and biochemical changes underlying cerebral small vessel damage.
    01/2015; 17(1):7. DOI:10.5853/jos.2015.17.1.7
  • Source
    02/2015; 2(1):e55. DOI:10.1212/NXI.0000000000000055

Full-text

Download
118 Downloads
Available from
May 28, 2014