Article

C-terminal truncations in human 3'-5' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy.

Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Nature Genetics (Impact Factor: 29.65). 10/2007; 39(9):1068-70. DOI: 10.1038/ng2082
Source: PubMed

ABSTRACT Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle-age onset. In nine families, we identified heterozygous C-terminal frameshift mutations in TREX1, which encodes a 3'-5' exonuclease. These truncated proteins retain exonuclease activity but lose normal perinuclear localization. These data have implications for the maintenance of vascular integrity in the degenerative cerebral microangiopathies leading to stroke and dementias.

0 Bookmarks
 · 
208 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerebroretinal vasculopathy (CRV) and the related diseases hereditary endotheliopathy with retinopathy, neuropathy, and stroke (HERNS), hereditary vascular retinopathy (HVR) and hereditary systemic angiopathy (HSA) [subsequently combined as retinovasculopathy and cerebral leukodystrophy (RVCL)] are devastating autosomal-dominant disorders of early to middle-age onset presenting with a core constellation of neurologic and ophthalmologic findings. This family of diseases is linked by specific mutations targeting a core region of a gene. Frameshift mutations in the carboxyl-terminus of three prime exonuclease-1 (TREX1), the major mammalian 3′ to 5′ DNA exonuclease on chromosome 3p21.1-p21.3, result in a systemic vasculopathy that follows an approximately 5-year course leading to death secondary to progressive neurologic decline, with sometimes a more protracted course in HERNS. Neuropathological features include a fibrinoid vascular necrosis or thickened hyalinized vessels associated with white matter ischemia, necrosis and often striking dystrophic calcifications. Ultrastructural studies of the vessel walls often demonstrate unusual multilaminated basement membranes.
    Brain Pathology 09/2014; 24(5). DOI:10.1111/bpa.12178 · 4.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The currently widespread use of neuroimaging has led neurologists to often face the problem of the differential diagnosis of white matter diseases. There are various forms of leukoencephalopathies (vascular, inflammatory and immunomediated, infectious, metabolic, neoplastic) and sometimes white matter lesions are expression of a genetic disease. While many inherited leukoencephalopathies fall in the child neurologist’s interest, others may have a delayed or even a typical onset in the middle or old age. This field is rapidly growing and, in the last few years, many new inherited white matter diseases have been described and genetically defined. A non-delayed recognition of middle and old age inherited leukoencephalopathies appears important to avoid unnecessary tests and therapies in the patient and to possibly anticipate the diagnosis in relatives. The aim of this review is to provide a guide to direct the diagnostic process when facing a patient with a suspicion of an inherited form of leukoencephalopathy and with clinical onset in middle or old age. Based on a MEDLINE search from 1990 to 2013, we identified 24 middle and old age onset inherited leukoencephalopathies and reviewed in this relation the most recent findings focusing on their differential diagnosis. We provide summary tables to use as a check list of clinical and neuroimaging findings that are most commonly associated with these forms of leukoencephalopathies. When present, we reported specific characteristics of single diseases. Several genetic diseases may be suspected in patients with middle or old age and white matter abnormalities. In only few instances, pathognomonic clinical or associated neuroimaging features help identifying a specific disease. Therefore, a comprehensive knowledge of the characteristics of these inherited white matter diseases appears important to improve the diagnostic work-up, optimize the choice of genetic tests, increase the number of diagnosed patients, and stimulate the research interest in this field.
    Journal of the Neurological Sciences 09/2014; 347(1-2). DOI:10.1016/j.jns.2014.09.020 · 2.26 Impact Factor
  • Source
    02/2015; 2(1):e55. DOI:10.1212/NXI.0000000000000055

Full-text

Download
112 Downloads
Available from
May 28, 2014