Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response

Laboratoire d'Ecophysiologie Moléculaire des Plantes, CEA Cadarache, DSV, IBEB, SBVME, UMR 6191 CNRS/CEA/Université Aix-Marseilles, Saint Paul lez Durance F-13108, France.
Plant Cell and Environment (Impact Factor: 5.91). 10/2007; 30(9):1041-51. DOI: 10.1111/j.1365-3040.2007.01675.x
Source: PubMed

ABSTRACT Besides major photosynthetic complexes of oxygenic photosynthesis, new electron carriers have been identified in thylakoid membranes of higher plant chloroplasts. These minor components, located in the stroma lamellae, include a plastidial NAD(P)H dehydrogenase (NDH) complex and a plastid terminal plastoquinone oxidase (PTOX). The NDH complex, by reducing plastoquinones (PQs), participates in one of the two electron transfer pathways operating around photosystem I (PSI), the other likely involving a still uncharacterized ferredoxin-plastoquinone reductase (FQR) and the newly discovered PGR5. The existence of a complex network of mechanisms regulating expression and activity of the NDH complex, and the presence of higher amounts of NDH complex and PTOX in response to environmental stress conditions the phenotype of mutants, indicate that these components likely play a role in the acclimation of photosynthesis to changing environmental conditions. Based on recently published data, we propose that the NDH-dependent cyclic pathway around PSI participates to the ATP supply in conditions of high ATP demand (such as high temperature or water limitation) and together with PTOX regulates cyclic electron transfer activity by tuning the redox state of intersystem electron carriers. In response to severe stress conditions, PTOX associated to the NDH and/or the PGR5 pathway may also limit electron pressure on PSI acceptor and prevent PSI photoinhibition.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Limitations in photosystem function and photosynthetic electron flow were investigated during leaf senescence in two field-grown plants, i.e., Euphorbia dendroides L. and Morus alba L., a summer- and winter-deciduous, shrub and tree, respectively. Analysis of fast chlorophyll (Chl) a fluorescence transients and post-illumination fluorescence yield increase were used to assess photosynthetic properties at various stages of senescence, the latter judged from the extent of Chl loss. In both plants, the yield of primary photochemistry of PSII and the content of PSI remained quite stable up to the last stages of senescence, when leaves were almost yellow. However, the potential for linear electron flow along PSII was limited much earlier, especially in E. dendroides, by an apparent inactivation of the oxygen-evolving complex and a lower efficiency of electron transfer to intermediate carriers. On the contrary, the corresponding efficiency of electron transfer from intermediate carriers to final acceptors of PSI was increased. In addition, cyclic electron flow around PSI was accelerated with the progress of senescence in E. dendroides, while a corresponding trend in M. alba was not statistically significant. However, there was no decrease in PSI activity even at the last stages of senescence. We argue that a switch to cyclic electron flow around PSI during leaf senescence may have the dual role of replenishing the ATP and maintaining a satisfactory nonphotochemical energy quenching, since both are limited by hindered linear electron transfer.
    Photosynthetica 09/2014; 52(3):413-420. DOI:10.1007/s11099-014-0046-5 · 1.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the mechanism involved in triggering state transitions at 40°C in Arabidopsis thaliana. Leaves (1-6week old) exposed to 40°C exhibited state II transition indicating its role as one of the earliest stress responsive mechanism apart from regulation of light energy distribution between photosystem (PS)II and PSI. Post illumination transients (rise in Fo') revealed that non-photochemical reduction of PQ pool at 40°C in dark is responsible for activation of STN7 kinase, consequently light harvesting complex (LHC)II phosphorylation leading to state II condition. Later, in pgr5 mutant, non-photochemical reduction of PQ pool was observed indicating the involvement of alternative electron transfer routes. In chlororespiratory mutant crr2-2, state II transition occurred signifying that the reduction of PQ pool is independent from NDH mediated cyclic electron transfer. Further, antimycin A inhibitor studies in wt and mutants revealed its inhibitory action on non-photochemical reduction of PQ pool affecting both LHCII phosphorylation and migration to PSI which leads to state I. Thus, our study showed that antimycin A sensitive pathway independent from PGR5 dependent cyclic electron transfer, is responsible for inducing non-photochemical reduction of PQ pool and state transitions at 40°C. Copyright © 2015 Elsevier B.V. All rights reserved.
    Journal of photochemistry and photobiology. B, Biology 02/2015; 146:24-33. DOI:10.1016/j.jphotobiol.2015.02.013 · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 11 plastid ndh genes have hovered frequently on the edge of dispensability, being absent in the plastid DNA of many algae and certain higher plants. We have compared the photosynthetic activity of tobacco (Nicotiana tabacum, cv. Petit Havana) with five transgenic lines (ΔndhF, pr-ΔndhF, T181D, T181A, and ndhF FC) and found that photosynthetic performance is impaired in transgenic ndhF-defective tobacco plants at rapidly fluctuating light intensities and higher than ambient CO2 concentrations. In contrast to wild type and ndhF FC, which reach the maximum photosynthetic rate in less than 1 min when light intensity suddenly increases, ndh defective plants (ΔndhF and T181A) show up to a 5 min delay in reaching the maximum photosynthetic rate at CO2 concentrations higher than the ambient 360 ppm. Net photosynthesis was determined at different CO2 concentrations when sequences of 130, 870, 61, 870, and 130 μmol m(-2) s(-1) PAR sudden light changes were applied to leaves and photosynthetic efficiency and entropy production (Sg) were determined as indicators of photosynthesis performance. The two ndh-defective plants, ΔndhF and T181A, had lower photosynthetic efficiency and higher Sg than wt, ndhF FC and T181D tobacco plants, containing full functional ndh genes, at CO2 concentrations above 400 ppm. We propose that the Ndh complex improves cyclic electron transport by adjusting the redox level of transporters during the low light intensity stage. In ndhF-defective strains, the supply of electrons through the Ndh complex fails, transporters remain over-oxidized (specially at high CO2 concentrations) and the rate of cyclic electron transport is low, impairing the ATP level required to rapidly reach high CO2 fixation rates in the following high light phase. Hence, ndh genes could be dispensable at low but not at high atmospheric concentrations of CO2.
    Frontiers in Plant Science 01/2015; 6:34. DOI:10.3389/fpls.2015.00034 · 3.64 Impact Factor