Article

Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response.

Laboratoire d'Ecophysiologie Moléculaire des Plantes, CEA Cadarache, DSV, IBEB, SBVME, UMR 6191 CNRS/CEA/Université Aix-Marseilles, Saint Paul lez Durance F-13108, France.
Plant Cell and Environment (Impact Factor: 5.91). 10/2007; 30(9):1041-51. DOI: 10.1111/j.1365-3040.2007.01675.x
Source: PubMed

ABSTRACT Besides major photosynthetic complexes of oxygenic photosynthesis, new electron carriers have been identified in thylakoid membranes of higher plant chloroplasts. These minor components, located in the stroma lamellae, include a plastidial NAD(P)H dehydrogenase (NDH) complex and a plastid terminal plastoquinone oxidase (PTOX). The NDH complex, by reducing plastoquinones (PQs), participates in one of the two electron transfer pathways operating around photosystem I (PSI), the other likely involving a still uncharacterized ferredoxin-plastoquinone reductase (FQR) and the newly discovered PGR5. The existence of a complex network of mechanisms regulating expression and activity of the NDH complex, and the presence of higher amounts of NDH complex and PTOX in response to environmental stress conditions the phenotype of mutants, indicate that these components likely play a role in the acclimation of photosynthesis to changing environmental conditions. Based on recently published data, we propose that the NDH-dependent cyclic pathway around PSI participates to the ATP supply in conditions of high ATP demand (such as high temperature or water limitation) and together with PTOX regulates cyclic electron transfer activity by tuning the redox state of intersystem electron carriers. In response to severe stress conditions, PTOX associated to the NDH and/or the PGR5 pathway may also limit electron pressure on PSI acceptor and prevent PSI photoinhibition.

0 Bookmarks
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Under high light (HL) stress, astaxanthin-accumulating Haematococcus pluvialis and β-carotene-accumulating Dunaliella salina showed different responsive patterns. To elucidate cellular-regulating strategies photosynthetically and metabolically, thylakoid membrane proteins in H. pluvialis and D. salina were extracted and relatively quantified after 0 h, 24 h and 48 h of HL stress. Proteomic analysis showed that three subunits of the cytochrome b6/f complex were greatly reduced under HL stress in H. pluvialis, while they were increased in D. salina. Additionally, the major subunits of both photosystem (PS) II and PSI reaction center proteins were first reduced and subsequently recovered in H. pluvialis, while they were gradually reduced in D. salina. D. salina also showed a greater ability to function using the xanthophyll-cycle and the cyclic photosynthetic electron transfer pathway compared to H. pluvialis. We propose a reoriented and effective HL-responsive strategy in H. pluvialis, enabling it to acclimate under HL. The promising metabolic pathway described here contains a reorganized pentose phosphate pathway, Calvin cycle and glycolysis pathway participating in carbon sink formation under HL in H. pluvialis. Additionally, the efficient carbon reorientation strategy in H. pluvialis was verified by elevated extracellular carbon assimilation and rapid conversion into astaxanthin.
    Scientific Reports 10/2014; 4:6661. · 5.08 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i) the supply of ADP and Mg2+, supported by adenylate kinase (AK) equilibrium in the intermembrane space, (ii) the supply of phosphate via membrane transporter in symport with H+, and (iii) the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.
    Frontiers in Plant Science 01/2015; in press. · 3.64 Impact Factor