Article

Neuroinformatics for genome-wide 3D gene expression mapping in the mouse brain.

Allen Institute for Brain Science, Seattle, WA 98103, USA.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (Impact Factor: 1.54). 08/2007; 4(3):382-93. DOI: 10.1109/tcbb.2007.1035
Source: DBLP

ABSTRACT Large scale gene expression studies in the mammalian brain offer the promise of understanding the topology, networks and ultimately the function of its complex anatomy, opening previously unexplored avenues in neuroscience. High-throughput methods permit genome-wide searches to discover genes that are uniquely expressed in brain circuits and regions that control behavior. Previous gene expression mapping studies in model organisms have employed situ hybridization (ISH), a technique that uses labeled nucleic acid probes to bind to specific mRNA transcripts in tissue sections. A key requirement for this effort is the development of fast and robust algorithms for anatomically mapping and quantifying gene expression for ISH. We describe a neuroinformatics pipeline for automatically mapping expression profiles of ISH data and its use to produce the first genomic scale 3-D mapping of gene expression in a mammalian brain. The pipeline is fully automated and adaptable to other organisms and tissues. Our automated study of over 20,000 genes indicates that at least 78.8 percent are expressed at some level in the adult C56BL/6J mouse brain. In addition to providing a platform for genomic scale search, high-resolution images and visualization tools for expression analysis are available at the Allen Brain Atlas web site (http://www.brain-map.org).

1 Bookmark
 · 
151 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Statistical shape models, such as Active Shape Models (ASMs), suffer from their inability to represent a large range of variations of a complex shape and to account for the large errors in detection of (point) landmarks. We propose a method, PDM-ENLOR (Point Distribution Model-based ENsemble of LOcal Regressors), that overcomes these limitations by locating each landmark individually using an ensemble of local regression models and appearance cues from selected landmarks. We first detect a set of reference landmarks which were selected based on their saliency during training. For each landmark, an ensemble of regressors is built. From the locations of the detected reference landmarks, each regressor infers a candidate location for that landmark using local geometric constraints, encoded by a point distribution model (PDM). The final location of that point is determined as a weighted linear combination, whose coefficients are learned from the training data, of candidates proposed by its ensemble's component regressors. We use multiple subsets of reference landmarks as explanatory variables for the component regressors to provide varying degrees of locality for the models in each ensemble. This helps our ensemble model to capture a larger range of shape variations as compared to a single PDM. We demonstrate the advantages of our method on the challenging problem of segmenting gene expression images of mouse brain. The overall mean and standard deviation of the Dice coefficient overlap over all 14 anatomical regions and all 100 test images were (88.1±9.5)%. Copyright © 2014 Elsevier B.V. All rights reserved.
    Medical Image Analysis 11/2014; 20(1). · 3.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.
    SPIE Medical Imaging; 03/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Allen Brain Atlases enable the study of spatially resolved, genome-wide gene expression patterns across the mammalian brain. Several explorative studies have applied linear dimensionality reduction methods such as Principal Component Analysis (PCA) and classical Multi-Dimensional Scaling (cMDS) to gain insight into the spatial organization of these expression patterns. In this paper, we describe a non-linear embedding technique called Barnes-Hut Stochastic Neighbor Embedding (BH-SNE) that emphasizes the local similarity structure of high-dimensional data points. By applying BH-SNE to the gene expression data from the Allen Brain Atlases, we demonstrate the consistency of the 2D, non-linear embedding of the sagittal and coronal mouse brain atlases, and across 6 human brains. In addition, we quantitatively show that BH-SNE maps are superior in their separation of neuroanatomical regions in comparison to PCA and cMDS. Finally, we assess the effect of higher-order principal components on the global structure of the BH-SNE similarity maps. Based on our observations, we conclude that BH-SNE maps with or without prior dimensionality reduction (based on PCA) provide comprehensive and intuitive insights in both the local and global spatial transcriptome structure of the human and mouse Allen Brain Atlases. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Methods 10/2014; 73. · 3.22 Impact Factor

Full-text (2 Sources)

Download
82 Downloads
Available from
May 22, 2014