Article

Induction of apoptosis by sanguinarine in C6 rat glioblastoma cells is associated with the modulation of the Bcl-2 family and activation of caspases through downregulation of extracellular signal-regulated kinase and Akt.

Department of Biomaterial Control (BK21 program), Dongeui University Graduate School, Busan, South Korea.
Anti-Cancer Drugs (Impact Factor: 1.89). 10/2007; 18(8):913-21. DOI: 10.1097/CAD.0b013e328117f463
Source: PubMed

ABSTRACT Sanguinarine is a benzophenanthridine alkaloid that is derived from the root of Sanguinaria canadensis and other poppy fumaria species, and is known to have antimicrobial, antiinflammatory and antioxidant properties. This study investigated the possible mechanisms through which sanguinarine exerts its antiproliferative action in cultured C6 rat glioblastoma cells. The exposure of C6 cells to sanguinarine resulted in growth inhibition and the induction of apoptosis in a dose-dependent manner, as measured by the MTT assay, fluorescence microscopy, agarose gel electrophoresis and annexin-V-based assay. The sanguinarine treatment induced the proteolytic activation of caspases and ICAD/DFF45, which was associated with the modulation of the Bcl-2 family, concomitant degradation of poly(ADP ribose) polymerase and phospholipase C-gamma1 protein, and DNA fragmentation. z-DEVD-fmk, a caspase-3-specific inhibitor, blocked poly(ADP ribose) polymerase degradation, DNA fragmentation and increased the survival rate of sanguinarine-treated C6 cells. Moreover, the activity of extracellular signal-regulated kinase and Akt was downregulated in sanguinarine-treated cells, and PD98059, a specific extracellular signal-regulated kinase inhibitor, and phosphatidylinositol 3'-kinase/Akt inhibitors, LY294002 and wortmanin, sensitized the cells to sanguinarine-induced apoptosis, indicating that the downregulation of the extracellular signal-regulated kinase and Akt signaling pathway may play a key role in sanguinarine-induced apoptosis in C6 cells.

0 Followers
 · 
70 Views
  • Source
    • "It has been shown to act as a potent inhibitor of NF-κB acti- vation, IκBα phosphorylation and degradation (Chaturvedi et al., 1997). The alkaloid is a potential lead compound in cancer therapy inducing apoptosis in a variety of cancer cells through various mechanisms (Adhami et al., 2004; Ahsan, Reagan-Shaw, Breur, & Ahmad, 2007; Debiton, Madelmont, Legault, & Barthomeuf, 2003; Han et al., 2007; Hussain et al., 2007; Kim et al., 2008). Nucleic acid binding and topoisomerase inhibition properties of sanguinarine have also been linked to its pronounced anticancer activity (Holy, Lamont, & Perkins, 2006; Maiti & Suresh Kumar, 2007, 2009, 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The interaction of the natural plant alkaloid and anticancer agent sanguinarine with tRNA(phe) has been investigated by spectroscopic and calorimetric techniques. Sanguinarine iminium binds to tRNA(phe) cooperatively; alkanolamine does not bind but in presence of large tRNA(phe) concentration, a conversion from alkanolamine to iminium occurs resulting in concomitant binding of the latter. The binding affinity of the iminium to tRNA(phe) obtained from isothermal titration calorimetry was of the order of 10(5) M(-1), which is close to that evaluated from spectroscopy. The binding was driven largely by negative enthalpy and a smaller but favourable positive entropy change. The binding was dependent on the [Na(+)] concentration, but had a larger non-electrostatic contribution to the Gibbs energy. A small heat capacity value and the enthalpy-entropy compensation in the energetics of the interaction characterized the binding of the iminium form to tRNA(phe). This study confirms that the tRNA(phe) binding moiety is the iminium form of sanguinarine.
    Journal of biomolecular Structure & Dynamics 06/2012; 30(2):223-34. DOI:10.1080/07391102.2012.677774 · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have suggested that phytomedicinal preparations from bloodroot (Sanguinaria canadensis L.) may harbor immunomodulatory properties. The purpose of this investigation was to determine the effects of alcohol tinctures and water infusions generated from bloodroot flowers, leaves, rhizomes, and roots on human peripheral blood mononuclear cell (PBMC) cytokine production and proliferation in vitro. PBMCs were collected from 16 healthy young adults and cultured with bloodroot extracts or respective controls for interleukins-1β, -2, -8, -10, interferon-γ, and tumor necrosis factor. Proliferative capabilities of both PBMCs and K562 cells (an immortalized human myelogenous leukemia cell line) following extract treatment were determined. High-pressure liquid chromatography was used to quantify berberine, chelerythrine, and sanguinarine in the extracts and to correlate extract composition with observed effects. Overall, infusions demonstrated greater immunomodulatory capabilities than tinctures, and flower- and root-based extracts showed greater immunomodulatory properties than leaf- or rhizome-based extracts (some effects seen with root-based extracts may be due to endotoxin). Several extracts were able to augment PBMC proliferation and diminish K562 proliferation, suggesting a selective anti-carcinogenic activity. The rhizome alcohol tincture had a markedly stronger effect against K562 cells than other extracts. Chelerythrine, sanguinarine, and endotoxin (but not berberine) sometimes correlated with observed effects. The in vitro activities demonstrated here suggest bloodroot extracts may have potential as therapeutic immunomodulators.
    Journal of Herbs Spices & Medicinal Plants 01/2009; 15(1):45. DOI:10.1080/10496470902787485
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sanguinarine is a plant-derived benzophenanthridine alkaloid and has been shown to possess anti-tumor activities against various cancer cells. In this study, we investigated whether sanguinarine induces apoptosis in A549 human lung cancer cells. Treatment of A549 cells with sanguinarine induced apoptosis in a dose- and time-dependent manner. Treatment with sanguinarine led to activation of caspases and MAPKs as well as increased MKP-1 expression. Importantly, pretreatment with z-VAD-fmk, a pan caspase inhibitor suppressed the sanguinarine-induced apoptosis in A549 cells. Moreover, pretreatment with NAC, a sulfhydryl group-containing reducing agent strongly suppressed the apoptotic response and caspase activation to sanguinarine. However, the sanguinarine-mediated cytotoxicity in A549 cells was not protected by pharmacological inhibition of MAPKs or MKP-1 siRNA-mediated knockdown of MKP-1. These results collectively suggest that sanguinarine induces apoptosis in A549 cells through cellular glutathione depletion and the subsequent caspase activation.
    Toxicology in Vitro 03/2009; 23(2):281-7. DOI:10.1016/j.tiv.2008.12.013 · 3.21 Impact Factor