Combinations of two capsid regions controlling canine host range determine canine transferrin receptor binding by canine and feline parvoviruses.

James A. Baker Institute, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
Journal of Virology (Impact Factor: 4.65). 10/2003; 77(18):10099-105. DOI: 10.1128/JVI.77.18.10099-10105.2003
Source: PubMed

ABSTRACT Feline panleukopenia virus (FPV) and its host range variant, canine parvovirus (CPV), can bind the feline transferrin receptor (TfR), while only CPV binds to the canine TfR. Introducing two CPV-specific changes into FPV (at VP2 residues 93 and 323) endowed that virus with the canine TfR binding property and allowed canine cell infection, although neither change alone altered either property. In CPV the reciprocal changes of VP2 residue 93 or 323 to the FPV sequences individually resulted in modest reductions in infectivity for canine cells. Changing both residues in CPV to the FPV amino acids blocked the canine cell infection, but that virus was still able to bind the canine TfR at low levels. This shows that both CPV-specific changes control canine TfR binding but that binding is not always sufficient to mediate infection.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mink enteritis virus (MEV) is one of the most important pathogens in the mink industry. Recent studies have shed light into the role of microRNAs (miRNAs), small noncoding RNAs of length ranging from 18¿23 nucleotides (nt), as critical modulators in the host-pathogen interaction networks. We previously showed that miRNA miR-181b can inhibit MEV replication by repression of viral non-structural protein 1 expression. Here, we report that two other miRNAs (miR-320a and miR-140) inhibit MEV entry into feline kidney (F81) cells by downregulating its receptor, transferrin receptor (TfR), by targeting the 3¿ untranslated region (UTR) of TfR mRNA, while being themselves upregulated.
    Virology Journal 12/2014; 11(1):210. DOI:10.1186/s12985-014-0210-3 · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Canine parvovirus (CPV) emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV), a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that>95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR), the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range.
    PLoS Pathogens 11/2014; 10(11):e1004475. DOI:10.1371/journal.ppat.1004475 · 8.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Members of the Parvoviridae utilize glycan receptors for cellular attachment and subsequent interactions determine transduction efficiency or pathogenic outcome. This review focuses on the identity of the glycan receptors utilized, their capsid binding footprints, and a discussion of the overlap of these sites with tropism, transduction, and pathogenicity determinants. Despite high sequence diversity between the different genera, most parvoviruses bind to negatively charged glycans, such as sialic acid and heparan sulfate, abundant on cell surface membranes. The capsid structure of these viruses exhibit high structural homology enabling common regions to be utilized for glycan binding. At the same time the sequence diversity at the common footprints allows for binding of different glycans or differential binding of the same glycan.
    Current Opinion in Virology 08/2014; 7:108–118. DOI:10.1016/j.coviro.2014.05.007 · 6.30 Impact Factor


1 Download
Available from