Article

Estimation of light interception properties of conifer shoots by an improved photographic method and a 3D model of shoot structure.

Nicholas School of Environmental & Earth Sciences, Duke University, Durham, NC 27708-0328, USA.
Tree Physiology (Impact Factor: 3.41). 11/2007; 27(10):1375-87. DOI: 10.1093/treephys/27.10.1375
Source: PubMed

ABSTRACT The spherical mean of the shoot silhouette-to-total leaf area ratio (STAR) and the shoot transmission coefficient (c) are two key structural parameters in radiative transfer models for calculating canopy photosynthesis and leaf area index. The standard optical method for estimating these parameters might introduce errors in the estimates for species with flexible shoots and needles by changing shoot inclination relative to its inclination in situ. We devised and tested two methods to address this problem. First, we modified the standard optical method by designing an apparatus that allows shoots to be photographed in their original orientation. Second, we developed a faster, model-based approach to replace photography and tested the results against the established approach. We used shoots of three pine species, Pinus echinata Mill. (needle length ~50 mm), P. taeda L. (~150 mm) and P. palustris Mill. (~300 mm). Values of the parameters simulated by the model were similar to those measured from the photographs. In our data, STAR varied about twofold among the pine species and was ~40% higher in shade shoots than in sun shoots of P. taeda. The transmission coefficient for P. taeda shade shoots was also ~40% higher than that of sun shoots of all three species. We tested the versatility of the model by employing it on shoots of two other pine species (P. strobus L. and P. thumbergiana Parl.) as well as on shoots of Tsuga canadensis L. Carr. and Picea pungens Engelm. Regardless of shoot characteristics, the model generated values of shoot structural parameters similar to those estimated with the optical method. Although species-specific and vertical gradients in parameter values are best for modeling radiative transfer in conifer canopies, our results suggest that, in the absence of adequate data, STAR can be approximated as 0.16 for a wide range of shoot structures. For applications requiring angle-dependent parameterization, our new model facilitates rapid generation of these radiative transfer parameters.

Download full-text

Full-text

Available from: Mathieu Thérézien, Sep 01, 2015
0 Followers
 · 
101 Views
 · 
85 Downloads
  • Source
    • "In this study, it was assumed that needles were spherically distributed (Campbell and Norman, 1998). CF profiles (β(z), dimensionless) in this Sitka spruce stand were assumed to be similar to those calculated by Therezien et al. (2007) "
    [Show abstract] [Hide abstract]
    ABSTRACT: Continuous cover forestry (CCF) aims at enhancing stand structural diversity and favouring natural regeneration. To give guidance on how to manage a CCF stand to achieve seedling growth below canopy, an estimate of light transmittance is required. So far, in the UK, only stand-level parameters have been used by managers to predict the understorey light in CCF stands. We assessed a UK Sitka spruce stand undergoing transformation to CCF and measured canopy transmittance using hemispherical pictures. Stand-level characteristics were found to be highly stand specific and not appropriate to predict seedling growth in CCF stands. We parameterized a detailed light model (4C-A-RTM) and a simple one-layer turbid medium model (BL). A sensitivity analysis was performed to test the effect of key stand structural parameters on the modelled transmittance. Measured transmittance from hemispherical photographs was used to validate the models. Both models tended to underestimate canopy transmittance but were positively related to current-year growth of the below canopy seedlings (R(2) = 0.92, P < 0.001). Comparison of the two models showed that the 4C-A-RTM provided a better estimation of light transmittance across observed canopy structural differences. Furthermore, the inclusion of stand characteristics in the 4C-A-RTM is likely to confer greater applicability across stands.
    Forestry 09/2011; 84(4-4):397-409. DOI:10.1093/forestry/cpr026 · 1.87 Impact Factor
  • Source
    • "Leaf area index (LAI, projected leaf area above a unit of ground) was measured with a LAI-2000 Plant Canopy Analyzer (Licor Inc., Lincoln, NE, USA). All LAI-2000 measurements were corrected for clumping of needles and for woody surface area (Thérézien et al. 2007; Iiames et al. 2008). To confirm that most of the seasonal variations in LAI were related to loblolly pine trees, we also measured the seasonal change in leaf needle loss from 30 litter traps [0.18 m 2 laundry baskets suspended on polyvinyl chloride (PVC) tubes] from which pine and hardwood leaves were sorted by hand. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The study examined the relationships between whole tree hydraulic conductance (K(tree)) and the conductance in roots (K(root)) and leaves (K(leaf)) in loblolly pine trees. In addition, the role of seasonal variations in K(root) and K(leaf) in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), K(root) declined faster than K(leaf). Although K(tree) depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased K(leaf) when REW was below 50%. After accounting for the effect of D on g(s), the seasonal decline in K(tree) caused a 35% decrease in g(s) and in its sensitivity to D, responses that were mainly driven by K(leaf) under high REW and by K(root) under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between K(tree) and g(s) and the acclimation of trees to changing environmental conditions.
    Plant Cell and Environment 05/2009; 32(8):980-91. DOI:10.1111/j.1365-3040.2009.01981.x · 5.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased canopy leaf area (L) may lead to higher forest productivity and alter processes such as species dynamics and ecosystem mass and energy fluxes. Few CO2 enrichment studies have been conducted in closed canopy forests and none have shown a sustained enhancement of L. We reconstructed 8 years (1996–2003) of L at Duke's Free Air CO2 Enrichment experiment to determine the effects of elevated atmospheric CO2 concentration ([CO2]) on L before and after canopy closure in a pine forest with a hardwood component, focusing on interactions with temporal variation in water availability and spatial variation in nitrogen (N) supply. The dynamics of L were reconstructed using data on leaf litterfall mass and specific leaf area for hardwoods, and needle litterfall mass and specific leaf area combined with needle elongation rates, and fascicle and shoot counts for pines. The dynamics of pine L production and senescence were unaffected by elevated [CO2], although L senescence for hardwoods was slowed. Elevated [CO2] enhanced pine L and the total canopy L (combined pine and hardwood species; P<0.050); on average, enhancement following canopy closure was ∼16% and 14% respectively. However, variation in pine L and its response to elevated [CO2] was not random. Each year pine L under ambient and elevated [CO2] was spatially correlated to the variability in site nitrogen availability (e.g. r2=0.94 and 0.87 in 2001, when L was highest before declining due to droughts and storms), with the [CO2]-induced enhancement increasing with N (P=0.061). Incorporating data on N beyond the range of native fertility, achieved through N fertilization, indicated that pine L had reached the site maximum under elevated [CO2] where native N was highest. Thus closed canopy pine forests may be able to increase leaf area under elevated [CO2] in moderate fertility sites, but are unable to respond to [CO2] in both infertile sites (insufficient resources) and sites having high levels of fertility (maximum utilization of resources). The total canopy L, representing the combined L of pine and hardwood species, was constant across the N gradient under both ambient and elevated [CO2], generating a constant enhancement of canopy L. Thus, in mixed species stands, L of canopy hardwoods which developed on lower fertility sites (∼3 g N inputs m−2 yr−1) may be sufficiently enhanced under elevated [CO2] to compensate for the lack of response in pine L, and generate an appreciable response of total canopy L (∼14%).
    Global Change Biology 11/2007; 13(12):2479 - 2497. DOI:10.1111/j.1365-2486.2007.01455.x · 8.22 Impact Factor
Show more