Article

Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer.

Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
Cancer Research (Impact Factor: 9.28). 09/2007; 67(15):7378-85. DOI: 10.1158/0008-5472.CAN-07-0602
Source: PubMed

ABSTRACT Increases in protease expression and activity are associated with malignant progression and poor patient prognosis in a number of human cancers. Members of the papain family of cysteine cathepsins are among the protease classes that have been functionally implicated in cancer. Inhibition of the cysteine cathepsin family using a pan-cathepsin inhibitor, JPM-OEt, led to tumor regression in the RIP1-Tag2 (RT2) mouse model of pancreatic islet cell tumorigenesis. The present study was designed to determine whether this cathepsin inhibitor, when used in combination with chemotherapy, would increase antitumor efficacy. RT2 mice were treated in a late-stage regression trial with three different chemotherapy regimens, alone or in combination with the cathepsin inhibitor, JPM-OEt. Cyclophosphamide was administered in either a maximum tolerated dose (MTD) regimen, a "metronomic" continuous low-dose regimen, or a "chemo-switch" regimen consisting of MTD followed by metronomic dosing. Mice were sacrificed at a defined end point and tumor burden was assessed followed by a detailed analysis of cell proliferation, apoptosis, vascularization, and invasiveness in the treated and control lesions. An additional cohort of mice was followed for survival analysis. The cathepsin inhibitor plus the chemo-switch regimen of cyclophosphamide led to the most pronounced reduction in tumor burden and greatest increase in overall survival. Cysteine cathepsin inhibition resulted in a significant decrease in tumor invasiveness, which was further augmented in combination with each of the chemotherapy dosing regimens. These results encourage the development and continuing evaluation of cysteine cathepsin inhibitors as cancer therapeutics.

0 Bookmarks
 · 
350 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cysteine cathepsins are normally found in the lysosomes where they are involved in intracellular protein turnover. Their ability to degrade the components of the extracellular matrix in vitro was first reported more than 25 years ago. However, cathepsins were for a long time not considered to be among the major players in ECM degradation in vivo. During the last decade it has, however, become evident that abundant secretion of cysteine cathepsins into extracellular milieu is accompanying numerous physiological and disease conditions, enabling the cathepsins to degrade extracellular proteins. In this review we will focus on cysteine cathepsins and their extracellular functions linked with ECM degradation, including regulation of their activity, which is often enhanced by acidification of the extracellular microenvironment, such as found in the bone resorption lacunae or tumor microenvironment. We will further discuss the ECM substrates of cathepsins with a focus on collagen and elastin, including the importance of that for pathologies. Finally, we will overview the current status of cathepsin inhibitors in clinical development for treatment of ECM-linked diseases, in particular osteoporosis. Due to their major role in ECM remodelling cysteine cathepsins have emerged as an important group of therapeutic targets for a number of ECM-related diseases, including, osteoporosis, cancer and cardiovascular diseases. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties..
    Biochimica et Biophysica Acta 03/2014; DOI:10.1016/j.bbagen.2014.03.017 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cathepsins L (catL) and B play an important role in tumor progression and have been considered promising therapeutic targets in the development of novel anticancer agents. Using a bioactivity-guided fractionation, a series of triterpenoids was identified as a new class of competitive inhibitors towards cathepsin L with affinity values in micromolar range. Among the 14 compounds evaluated, the most promising were 3-epiursolic acid (3), 3-(hydroxyimino)oleanolic acid (9), and 3-(hydroxyimino)masticadienoic acid (13) with IC50 values of 6.5, 2.4, and 2.6 μM on catL, respectively. Most of the evaluated triterpenoids do not inhibit cathepsin B. Thus, the evaluated compounds exhibit a great potential to help in the design of new inhibitors with enhanced potency and affinity towards catL. Docking studies were performed in order to gain insight on the binding mode and SAR of these compounds.
    Chemistry & Biodiversity 09/2014; 11(9):1354-63. DOI:10.1002/cbdv.201400065 · 1.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cathepsins have emerged as potential drug targets for melanoma therapy and engrossed attention of researchers for development and evaluation of cysteine cathepsin inhibitors as cancer therapeutics. In this direction, we have designed, synthesized, and assayed in vitro a small library of 30 low molecular weight functionalized analogs of chalcone hydrazones for evaluating structure-activity relationship aspects and inhibitory potency against cathepsin B and H. The maximum inhibitory effect was exerted by chalcone hydrazones, which are open chain analogues followed by their cyclized derivatives, pyrazolines and pyrazoles. All the synthesized compounds were established as reversible inhibitors of these enzymes. Cathepsin B was selectively inhibited by the compounds in each series. Compounds 1d, 2d and 4d were recognized as most potent inhibitors of cathepsin B in this study with Ki values of 0.042μM, 0.053μM and 0.131μM whereas 1b (Ki=1.111μM), 2b (Ki=1.174μM) and 4b (Ki=1.562μM) inhibited cathepsin H activity effectively. And, preeminent cathepsin B inhibitors were -NO2 functionalized however, -Cl substituted moieties were the most persuasive inhibitors for cathepsin H among all the designed compounds. Molecular docking studies performed using iGemdock provided valuable insights.
    Bioorganic & Medicinal Chemistry 05/2014; 22(15). DOI:10.1016/j.bmc.2014.05.037 · 2.95 Impact Factor

Full-text (2 Sources)

Download
34 Downloads
Available from
May 27, 2014