A human scFv antibody against TRAIL receptor 2 induces autophagic cell death in both TRAIL-sensitive and TRAIL-resistant cancer cells.

Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
Cancer Research (Impact Factor: 9.28). 09/2007; 67(15):7327-34. DOI: 10.1158/0008-5472.CAN-06-4766
Source: PubMed

ABSTRACT Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptotic cell death in a variety of tumor cells without significant cytotoxicity on normal cells. However, many cancer cells with apoptotic defects are resistant to treatment with TRAIL alone, limiting its potential as an anticancer therapeutic. Here, we report on the tumoricidal activity of a human single-chain fragment variable, HW1, which specifically binds to TRAIL receptor 2 (TR2) without competing with TRAIL for the binding. HW1 treatment as a single agent induces autophagic cell death in a variety of both TRAIL-sensitive and TRAIL-resistant cancer cells, but exhibits much less cytotoxicity on normal cells. The HW1-induced autophagic cell death was inhibited by an autophagy inhibitor, 3-methyladenine, or by RNA interference knockdown of Beclin-1 and Atg7. We also show that the HW1-mediated autophagic cell death occurs predominantly via the c-Jun NH(2)-terminal kinase pathway in a caspase-independent manner. Analysis of the death-inducing signaling complex induced by HW1 binding to TR2 exhibits the recruitment of TNF receptor-associated death domain and TNF receptor-associated factor 2, but not Fas-associated death domain, caspase-8, or receptor-interacting protein, which is distinct from that induced by TRAIL. Our results reveal a novel TR2-mediated signaling pathway triggering autophagic cell death and provides a new strategy for the elimination of cancer cells, including TRAIL-resistant tumors, through nonapoptotic cell death.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the microglia-driven apoptosis and the Aβ deposits triggered generation of new microglial cells in the neocortex of TgCRND8 mice. Three- and seven-month-old TgCRND8 mice, displaying an early and widespread amyloid deposition, respectively, were used. In 7-month-old TgCRND8 mice the Aβ-associated glial reaction was accompanied by an intense immunoreactivity of both TNF-α and inducible nitric oxide synthase, increased immunoreactivity of the pro-apoptotic protein Bax and a decrease in levels of the anti-apoptotic protein Bcl-2.Cortical and hippocampal neurons of TgCRND8 mice displayed higher immunoreactivity and higher nuclear expression of the transcription factor NF-kB than controls. It is possible that such an increase could represent a defence/compensatory response to degeneration. These findings indicate that Aβ deposits activate brain-resident microglia population and astrocytes, and induce overproduction of inflammatory mediators that enhance pro- and anti-apoptotic cascades. In both 3- and 7-month-old TgCRND8 mice apparent gliogenesis was present in the vicinity of Aβ plaques in the neocortex, indicating that microglia have a high proliferative rate which might play a more complex role than previously acknowledge.
    Neuroscience Letters 10/2011; 506(1):94-9. DOI:10.1016/j.neulet.2011.10.056 · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Though the activation of c-Jun NH2-terminal kinase (JNK) has been reported to be essential for autophagic cell death in response to various stressors, the molecular links between JNK activation and autophagic cell death signaling remain elusive. Here we report that, in the JNK-dependent autophagic cell death of HCT116 cells induced by an agonistic single chain variable fragment antibody, HW1, against human death receptor 5 (DR5), JNK activation upregulated Beclin-1 expression and induced Bcl-2 and p53 phosphorylation. Further, the p53-deficient HCT116 cells showed less susceptibility to the HW1-mediated autophagic cell death than the wild type cells, suggesting that JNK-mediated p53 phosphorylation promotes the autophagic cell death. Our results suggest that DR5-stimulated JNK activation and its consequent fluxes into the pro-autophagic signaling pathways contribute to the autophagic cell death in cancer cells.
    Biochemical and Biophysical Research Communications 04/2009; 382(4):726-9. DOI:10.1016/j.bbrc.2009.03.095 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deferoxamine (DFO), an iron chelator, has numerous clinical applications for patients presenting with iron overload in regards to the improvement in the quality of life and overall survival. In addition, experimental iron chelators have demonstrated potent anticancer properties. The present study investigated the effects of DFO on TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in colon cancer cells and and the mechanism involved. The experimental results showed that DFO treatment inhibited TRAIL-mediated cancer cell apoptosis by increasing Akt activation and decreasing caspase activation in human colon cancer cells. Furthermore, DFO treatment induced autophagy flux, and chloroquine, an autophagy inhibitor, blocked DFO-mediated inhibition of TRAIL-induced apoptosis. The present study demonstrated that DFO inhibited TRAIL-mediated tumor cell death via the autophagy pathway, and the results suggest that potent anticancer agent, DFO, can be an inhibitor against antitumor therapy including TRAIL protein.
    Oncology Reports 12/2014; 33(3). DOI:10.3892/or.2014.3676 · 2.19 Impact Factor


Available from