Article

Highly efficient gene delivery for bladder cancers by intravesically administered replication-competent retroviral vectors

Departments of Urology and Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
Clinical Cancer Research (Impact Factor: 8.19). 09/2007; 13(15 Pt 1):4511-8. DOI: 10.1158/1078-0432.CCR-07-0151
Source: PubMed

ABSTRACT In an attempt to improve viral delivery of potentially therapeutic genes via an intravesical route, we have recently developed murine leukemia virus-based replication-competent retrovirus (RCR) vectors.
We evaluated the transduction efficiency of intravesically administered RCR vectors to bladder tumor using orthotopic animal models to determine their potential as delivery vectors for bladder cancer.
The RCR vector containing green fluorescent protein (GFP) marker gene achieved efficient in vitro transmission of the GFP transgene. Murine bladder tumor-2 mouse bladder tumors exposed to intravesically administered RCR vectors exhibited 0%, 9.2 +/- 2.9%, and 30.0 +/- 6.2% of GFP expression at 9, 18, and 27 days after exposure in the orthotopic model, respectively. Orthotopic KU-19-19 human bladder tumors exposed to intravesically administered RCR vectors exhibited 3%, 85 +/- 1.0%, and 100% of GFP expression at 7, 21, and 35 days after exposure, respectively. GFP staining was observed only in the tumor cells in the bladder. No detectable PCR products of GFP gene could be observed in distant organs. Treatment with RCR vectors containing yeast cytosine deaminase (CD) gene plus 5-fluorocytosine (5-FC) dramatically inhibited the growth of preestablished murine bladder tumor-2 tumors. A single course of 5-FC treatment resulted in a 50% animal survival in mice exposed to RCR-CD compared with a 0% survival in all controls over a 70-day follow-up period.
Intravesically administered RCR vectors can efficiently deliver genes to orthotopic bladder tumor without viral spread in distant organs. RCR-CD/5-FC suicide gene therapy promises to be a novel and potentially therapeutic modality for bladder cancer.

0 Followers
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bladder cancer is the second most common cancer of the urogenital tract and novel therapeutic approaches that can reduce recurrence and progression are needed. The tumor microenvironment can significantly influence tumor development and therapy response. It is therefore often desirable to grow tumor cells in the organ from which they originated. This protocol describes an orthotopic model of bladder cancer, in which MB49 murine bladder carcinoma cells are instilled into the bladder via catheterization. Successful tumor cell implantation in this model requires disruption of the protective glycosaminoglycan layer, which can be accomplished by physical or chemical means. In our protocol the bladder is treated with trypsin prior to cell instillation. Catheterization of the bladder can also be used to deliver therapeutics once the tumors are established. This protocol describes the delivery of an adenoviral construct that expresses a luciferase reporter gene. While our protocol has been optimized for short-term studies and focuses on gene delivery, the methodology of mouse bladder catheterization has broad applications.
    Journal of Visualized Experiments 01/2013; DOI:10.3791/50181
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the effects of intravesical administration of paclitaxel (PTX-30 W), which was prepared by solubilization with a water-soluble amphiphilic polymer composed of PMB30W, a copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate, in an orthotopic bladder cancer model. The cytotoxicities of PMB30W were examined in MBT-2 cell cultures and the results were compared with those of the conventional paclitaxel solubilizer Cremophor. In an orthotopic MBT-2 bladder cancer model, the effect of intravesical administration of PTX-30 W was compared with that of paclitaxel solubilized with Cremophor (PTX-CrEL). The paclitaxel concentration in bladder tumors after the intravesical treatment was also evaluated using liquid chromatography tandem mass spectrometry (LC-MS/MS) system. In vitro, Cremophor exhibited dose-dependent cytotoxicity towards MBT-2 cells, whereas no cytotoxicity was observed with PMB30W. In the orthotopic bladder cancer model, intravesical administration of PTX-30 W resulted in a significant reduction of bladder wet weight compared with that of PTX-CrEL. The paclitaxel concentration in bladder tumors after the intravesical treatment was significantly higher in PTX-30 W treated mice than in PTX-CrEL treated mice. Intravesically administered PTX-30 W can elicit stronger antitumor effects on bladder tumors than conventional paclitaxel formulated in Cremophor, presumably because of its better penetration into tumor cells. PTX-30 W might be a promising antitumor agent for intravesical treatment of non-muscle invasive bladder cancer.
    BMC Cancer 04/2015; 15(1):317. DOI:10.1186/s12885-015-1338-2 · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A tumor-selective non-lytic retroviral replicating vector (RRV), Toca 511, and an extended-release formulation of 5-fluorocytosine (5-FC), Toca FC, are currently being evaluated in clinical trials in patients with recurrent high-grade glioma (NCT01156584, NCT01470794 and NCT01985256). Tumor-selective propagation of this RRV enables highly efficient transduction of glioma cells with cytosine deaminase (CD), which serves as a prodrug activator for conversion of the anti-fungal prodrug 5-FC to the anti-cancer drug 5-fluorouracil (5-FU) directly within the infected cells. We investigated whether, in addition to its direct cytotoxic effects, 5-FU generated intracellularly by RRV-mediated CD/5-FC prodrug activator gene therapy could also act as a radiosensitizing agent. Efficient transduction by RRV and expression of CD were confirmed in the highly aggressive, radioresistant human glioblastoma cell line U87EGFRvIII and its parental cell line U87MG (U87). RRV-transduced cells showed significant radiosensitization even after transient exposure to 5-FC. This was confirmed both in vitro by a clonogenic colony survival assay and in vivo by bioluminescence imaging analysis. These results provide a convincing rationale for development of tumor-targeted radiosensitization strategies utilizing the tumor-selective replicative capability of RRV, and incorporation of radiation therapy into future clinical trials evaluating Toca 511 and Toca FC in brain tumor patients.Cancer Gene Therapy advance online publication, 10 October 2014; doi:10.1038/cgt.2014.38.
    Cancer Gene Therapy 10/2014; 21(10). DOI:10.1038/cgt.2014.38 · 2.55 Impact Factor