Article

The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma.

Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 09/2007; 104(32):13134-9. DOI: 10.1073/pnas.0706017104
Source: PubMed

ABSTRACT Classical Hodgkin lymphomas (cHLs) contain small numbers of neoplastic Reed-Sternberg (RS) cells within an extensive inflammatory infiltrate that includes abundant T helper (Th)-2 and T regulatory (Treg) cells. The skewed nature of the T cell infiltrate and the lack of an effective host antitumor immune response suggest that RS cells use potent mechanisms to evade immune attack. In a screen for T cell-inhibitory molecules in cHL, we found that RS cells selectively overexpressed the immunoregulatory glycan-binding protein, galectin-1 (Gal1), through an AP1-dependent enhancer. In cocultures of activated T cells and Hodgkin cell lines, RNAi-mediated blockade of RS cell Gal1 increased T cell viability and restored the Th1/Th2 balance. In contrast, Gal1 treatment of activated T cells favored the secretion of Th2 cytokines and the expansion of CD4+CD25high FOXP3+ Treg cells. These data directly implicate RS cell Gal1 in the development and maintenance of an immunosuppressive Th2/Treg-skewed microenvironment in cHL and provide the molecular basis for selective Gal1 expression in RS cells. Thus, Gal1 represents a potential therapeutic target for restoring immune surveillance in cHL.

Download full-text

Full-text

Available from: Stefano Monti, Jul 05, 2015
0 Followers
 · 
107 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galectins belong to a family of carbohydrate-binding proteins with an affinity for β-galactosides. Galectin-1 is differentially expressed by various normal and pathologic tissues and displays a wide range of biological activities. In oncology, galectin-1 plays a pivotal role in tumor growth and in the multistep process of invasion, angiogenesis, and metastasis. Evidence indicates that galectin-1 exerts a variety of functions at different steps of tumor progression. Moreover, it has been demonstrated that galectin-1 cellular localization and galectin-1 binding partners depend on tumor localization and stage. Recently, galectin-1 overexpression has been extensively documented in several tumor types and/or in the stroma of cancer cells. Its expression is thought to reflect tumor aggressiveness in several tumor types. Galectin-1 has been identified as a promising drug target using synthetic and natural inhibitors. Preclinical data suggest that galectin-1 inhibition may lead to direct antiproliferative effects in cancer cells as well as antiangiogenic effects in tumors. We provide an up-to-date overview of available data on the role of galectin-1 in different molecular and biochemical pathways involved in human malignancies. One of the major challenges faced in targeting galectin-1 is the translation of current knowledge into the design and development of effective galectin-1 inhibitors in cancer therapy.
    Cancer Treatment Reviews 08/2013; 40(2). DOI:10.1016/j.ctrv.2013.07.007
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kaposi’s sarcoma (KS), a multifocal vascular neoplasm linked to human herpesvirus-8 (HHV-8/KS-associated herpesvirus [KSHV]) infection, is the most common AIDS-associated malignancy. Clinical management of KS has proven to be challenging because of its prevalence in immunosuppressed patients and its unique vascular and inflammatory nature that is sustained by viral and host-derived paracrine-acting factors primarily released under hypoxic conditions. We show that interactions between the regulatory lectin galectin-1 (Gal-1) and specific target N-glycans link tumor hypoxia to neovascularization as part of the pathogenesis of KS. Expression of Gal-1 is found to be a hallmark of human KS but not other vascular pathologies and is directly induced by both KSHV and hypoxia. Interestingly, hypoxia induced Gal-1 through mechanisms that are independent of hypoxia-inducible factor (HIF) 1α and HIF-2α but involved reactive oxygen species–dependent activation of the transcription factor nuclear factor κB. Targeted disruption of Gal-1–N-glycan interactions eliminated hypoxia-driven angiogenesis and suppressed tumorigenesis in vivo. Therapeutic administration of a Gal-1–specific neutralizing mAb attenuated abnormal angiogenesis and promoted tumor regression in mice bearing established KS tumors. Given the active search for HIF-independent mechanisms that serve to couple tumor hypoxia to pathological angiogenesis, our findings provide novel opportunities not only for treating KS patients but also for understanding and managing a variety of solid tumors.
    Journal of Experimental Medicine 10/2012; 209(11):1985-2000. DOI:10.1084/jem.20111665
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-1 (Gal-1) has been shown to play a major role in tumor immune escape by inducing apoptosis of effector leukocytes and correlating with tumor aggressiveness and disease progression. Thus, targeting the Gal-1/Gal-1 ligand axis represents a promising cancer therapeutic approach. Here, to test the Gal-1-mediated tumor immune evasion hypothesis and demonstrate the importance of Gal-1-binding N-acetyllactosamines in controlling the fate and function of antitumor immune cells, we treated melanoma- or lymphoma-bearing mice with peracetylated 4-fluoro-glucosamine (4-F-GlcNAc), a metabolic inhibitor of N-acetyllactosamine biosynthesis, and analyzed tumor growth and immune profiles. We found that 4-F-GlcNAc spared Gal-1-mediated apoptosis of T cells and natural killer (NK) cells by decreasing their expression of Gal-1-binding determinants. 4-F-GlcNAc enhanced tumor lymphocytic infiltration and promoted elevations in tumor-specific cytotoxic T cells and IFN-γ levels, while lowering IL-10 production. Collectively, our data suggest that metabolic lowering of Gal-1-binding N-acetyllactosamines may attenuate tumor growth by boosting antitumor immune cell levels, representing a promising approach for cancer immunotherapy.
    Journal of Investigative Dermatology 12/2011; 132(2):410-20. DOI:10.1038/jid.2011.335