Article

The cytoplasmic tails of Uukuniemi Virus (Bunyaviridae) G(N) and G(C) glycoproteins are important for intracellular targeting and the budding of virus-like particles.

Ludwig Institute for Cancer Research, Stockholm Branch, Karolinska Institute, Box 240, SE-17177 Stockholm, Sweden.
Journal of Virology (Impact Factor: 4.65). 11/2007; 81(20):11381-91. DOI: 10.1128/JVI.00767-07
Source: PubMed

ABSTRACT Functional motifs within the cytoplasmic tails of the two glycoproteins G(N) and G(C) of Uukuniemi virus (UUK) (Bunyaviridae family) were identified with the help of our recently developed virus-like particle (VLP) system for UUK virus (A. K. Overby, V. Popov, E. P. Neve, and R. F. Pettersson, J. Virol. 80:10428-10435, 2006). We previously reported that information necessary for the packaging of ribonucleoproteins into VLPs is located within the G(N) cytoplasmic tail (A. K. Overby, R. F. Pettersson, and E. P. Neve, J. Virol. 81:3198-3205, 2007). The G(N) glycoprotein cytoplasmic tail specifically interacts with the ribonucleoproteins and is critical for genome packaging. In addition, two other regions in the G(N) cytoplasmic tail, encompassing residues 21 to 25 and 46 to 50, were shown to be important for particle generation and release. By the introduction of point mutations within these two regions, we demonstrate that leucines at positions 23 and 24 are crucial for the initiation of VLP budding, while leucine 46, glutamate 47, and leucine 50 are important for efficient exit from the endoplasmic reticulum and subsequent transport to the Golgi complex. We found that budding and particle generation are highly dependent on the intracellular localization of both glycoproteins. The short cytoplasmic tail of UUK G(C) contains a lysine at position -3 from the C terminus that is highly conserved among members of the Phlebovirus, Hantavirus, and Orthobunyavirus genera. Mutating this single amino acid residue in G(C) resulted in the mislocalization of not only G(C) but also G(N) to the plasma membrane, and VLP generation was compromised in cells expressing this mutant. Together, these results demonstrate that the cytoplasmic tails of both G(N) and G(C) contain specific information necessary for efficient virus particle generation.

1 Follower
 · 
167 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Uukuniemi virus (UUKV) is a model system for investigating the Phlebovirus genus of the Bunyaviridae. We report the UUKV glycome, revealing differential processing of the Gn and Gc virion glycoproteins. Both glycoproteins display poly-N-acetyllactosamines, consistent with virion assembly in the medial Golgi apparatus, whereas oligomannose-type glycans required for DC-SIGN-dependent cellular attachment are predominant on Gc. Local virion structure and the route of viral egress from the cell leaves a functional imprint on the phleboviral glycome.
    Journal of Virology 06/2014; 88(17). DOI:10.1128/JVI.01662-14 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, neuroinvasiveness and neurovirulence of MP-12 in mice may be a concern when vaccinating certain individuals, especially those that are immunocompromised. We have developed a novel, single-cycle replicable MP-12 (scMP-12), which carries an L RNA, M RNA mutant encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function, and S RNA encoding N protein and green fluorescent protein. The scMP-12 underwent efficient amplification, then formed plaques and retained the introduced mutation after serial passages in a cell line stably expressing viral envelope proteins. However, inoculation of the scMP-12 into naïve cells resulted in a single round of viral replication, and production of low levels of noninfectious virus-like particles. Intracranial inoculation of scMP-12 into suckling mice did not cause clinical signs or death, a finding which demonstrated that the scMP-12 lacked neurovirulence. Mice immunized with a single dose of scMP-12 produced neutralizing antibodies, whose titers were higher than in mice immunized with replicon particles carrying L RNA and S RNA encoding N protein and green fluorescent protein. Moreover, 90% of the scMP-12-immunized mice were protected from wild-type RVFV challenge by efficiently suppressing viremia and replication of the challenge virus in the liver and the spleen. These data demonstrated that scMP-12 is a safe and immunogenic RVFV vaccine candidate.
    PLoS Neglected Tropical Diseases 03/2014; 8(3):e2746. DOI:10.1371/journal.pntd.0002746 · 4.49 Impact Factor
  • Source

Full-text (2 Sources)

Download
38 Downloads
Available from
May 22, 2014