Article

Cell-penetrating peptides as transporters for morpholino oligomers: effects of amino acid composition on intracellular delivery and cytotoxicity

AVI BioPharma, Inc., Corvallis, OR 97333, USA.
Nucleic Acids Research (Impact Factor: 8.81). 07/2007; 35(15):5182-91. DOI: 10.1093/nar/gkm478
Source: PubMed

ABSTRACT Arginine-rich cell-penetrating peptides (CPPs) are promising transporters for intracellular delivery of antisense morpholino oligomers (PMO). Here, we determined the effect of L-arginine, D-arginine and non-alpha amino acids on cellular uptake, splice-correction activity, cellular toxicity and serum binding for 24 CPP-PMOs. Insertion of 6-aminohexanoic acid (X) or beta-alanine (B) residues into oligoarginine R8 decreased the cellular uptake but increased the splice-correction activity of the resulting compound, with a greater increase for the sequences containing more X residues. Cellular toxicity was not observed for any of the conjugates up to 10 microM. Up to 60 microM, only the conjugates with > or = 5 Xs exhibited time- and concentration-dependent toxicity. Substitution of L-arginine with D-arginine did not increase uptake or splice-correction activity. High concentration of serum significantly decreased the uptake and splice-correction activity of oligoarginine conjugates, but had much less effect on the conjugates containing X or B. In summary, incorporation of X/B into oligoarginine enhanced the antisense activity and serum-binding profile of CPP-PMO. Toxicity of X/B-containing conjugates was affected by the number of Xs, treatment time and concentration. More active, stable and less toxic CPPs can be designed by optimizing the position and number of R, D-R, X and B residues.

Download full-text

Full-text

Available from: Hong M Moulton, Jun 24, 2015
1 Follower
 · 
176 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell-penetrating peptides (CPPs), such as nona-arginine (9R), poorly translocate siRNA into cells. Our studies demonstrate that attaching 9R to ligands that bind cell surface receptors quantitatively increases siRNA uptake and importantly, allows functional delivery of complexed siRNA. The mechanism involved accumulation of ligand-9R:siRNA microparticles on the cell membrane, which induced transient membrane inversion at the site of ligand-9R binding and rapid siRNA translocation into the cytoplasm. siRNA release also occurred late after endocytosis when the ligand was attached to the L isoform of 9R, but not the protease-resistant 9DR, prolonging mRNA knockdown. This critically depended on endosomal proteolytic activity, implying that partial CPP degradation is required for endosome-to-cytosol translocation. The data demonstrate that ligand attachment renders simple polycationic CPPs effective for siRNA delivery by restoring their intrinsic property of translocation. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Chemistry & Biology 12/2014; 22(1). DOI:10.1016/j.chembiol.2014.11.009 · 6.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Internalization of peptides and proteins into live cells is an essential prerequisite for studies on intracellular signal pathways, for treatment of certain microbial diseases and for signal transduction therapy, especially for cancer treatment. Cell penetrating peptides (CPPs) facilitate the transport of cargo-proteins through the cell membrane into live cells. CPPs which allow formation of non-covalent complexes with the cargo are used primarily in this study due to the relatively easy handling procedure. Efficiency of the protein uptake is estimated qualitatively by fluorescence microscopy and quantitatively by SDS-PAGE. Using the CPP cocktail JBS-Proteoducin, the intracellular concentrations of a secondary antibody and bovine serum albumin can reach the micromolar range. Internalization of antibodies allows mediation of intracellular pathways including knock down of signal transduction. The high specificity and affinity of antibodies makes them potentially more powerful than siRNA. Thus, CPPs represent a significant new possibility to study signal transduction processes in competition or in comparison to the commonly used other techniques. To estimate the highest attainable intracellular concentrations of cargo proteins, the CPPs are tested for cytotoxicity. Cell viability and membrane integrity relative to concentration of CPPs are investigated. Viability as estimated by the reductive activity of mitochondria (MTT-test) is more sensitive to higher concentrations of CPPs versus membrane integrity, as measured by the release of dead cell protease. Distinct differences in uptake efficiency and cytotoxic effects are found using six different CPPs and six different adhesion and suspension cell lines.
    Journal of Cellular Biochemistry 12/2011; 112(12):3824-33. DOI:10.1002/jcb.23313 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The p53 tumor suppressor gene encodes a transcription factor that is commonly mutated in cancer. Tumors arise when premalignant cells are unable to undergo p53-dependent apoptosis, cell cycle arrest or DNA repair. The p53-signaling pathway affects not only tumor development, but also the response of tumors to chemotherapeutic drugs. In this study, we use cell penetrating peptide conjugates of phosphorodiamidate morpholino oligomers (PPMOs) to inhibit p53 expression. We examine the functional properties of endogenous p53 isoforms that are produced upon PPMO-mediated inhibition of p53 translation and splicing, and report that loss of N-terminal or C-terminal sequences interferes with the transcriptional activity of p53. Importantly, we report that PPMO-mediated inhibition of p53 expression sensitizes human cancer cells with wild-type p53 to chemotherapeutic drugs.
    Oncogene 07/2011; 31(8):1024-33. DOI:10.1038/onc.2011.300 · 8.56 Impact Factor