Article

Molecular mechanisms underlying the mitosis-meiosis decision.

Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
Chromosome Research (Impact Factor: 2.69). 02/2007; 15(5):523-37. DOI: 10.1007/s10577-007-1151-0
Source: PubMed

ABSTRACT Most eukaryotic cells possess genetic potential to perform meiosis, but the vast majority of them never initiate it. The entry to meiosis is strictly regulated by developmental and environmental conditions, which vary significantly from species to species. Molecular mechanisms underlying the mitosis-meiosis decision are unclear in most organisms, except for a few model systems including fission yeast Schizosaccharomyces pombe. Nutrient limitation is a cue to the entry into meiosis in this microbe. Signals from nutrients converge on the activity of Mei2 protein, which plays pivotal roles in both induction and progression of meiosis. Here we outline the current knowledge of how a set of environmental stimuli eventually activates Mei2, and discuss how Mei2 governs the meiotic program molecularly, especially focusing on a recent finding that Mei2 antagonizes selective elimination of meiotic messenger RNAs.

0 Followers
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Germ cell differentiation, the cellular process by which a diploid progenitor cell produces by meiotic divisions haploid cells, is conserved from the unicellular yeasts to mammals. Over the recent years, yeast germ cell differentiation process has proven to be a powerful biological system to identify and study several long noncoding RNAs (lncRNAs) that play a central role in regulating cellular differentiation by acting directly on chromatin. Remarkably, in the well-studied budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe, the lncRNA-based chromatin regulations of germ cell differentiation are quite different. In this review, we present an overview of these regulations by focusing on the mechanisms and their respective functions both in S. cerevisiae and in S. pombe. Part of these lncRNA-based chromatin regulations may be conserved in other eukaryotes and play critical roles either in the context of germ cell differentiation or, more generally, in the development of multicellular organisms.
    Chromosome Research 11/2013; 21(6-7). DOI:10.1007/s10577-013-9393-5 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Data on absolute molecule numbers will empower the modeling, understanding, and comparison of cellular functions and biological systems. We quantified transcriptomes and proteomes in fission yeast during cellular proliferation and quiescence. This rich resource provides the first comprehensive reference for all RNA and most protein concentrations in a eukaryote under two key physiological conditions. The integrated data set supports quantitative biology and affords unique insights into cell regulation. Although mRNAs are typically expressed in a narrow range above 1 copy/cell, most long, noncoding RNAs, except for a distinct subset, are tightly repressed below 1 copy/cell. Cell-cycle-regulated transcription tunes mRNA numbers to phase-specific requirements but can also bring about more switch-like expression. Proteins greatly exceed mRNAs in abundance and dynamic range, and concentrations are regulated to functional demands. Upon transition to quiescence, the proteome changes substantially, but, in stark contrast to mRNAs, proteins do not uniformly decrease but scale with cell volume.
    Cell 10/2012; 151(3):671-83. DOI:10.1016/j.cell.2012.09.019 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The switch from mitosis to meiosis is one of the most pivotal events in eukaryotes undergoing sexual reproduction. However, the mechanisms orchestrating meiosis initiation remain elusive, particularly in plants. Flowering plants are heterosporous, with male and female spore genesis adopting different developmental courses. We show here that plant pollen mother cells contain a specific meiosis initiation machinery through characterization of a rice (Oryza sativa) gene, MICROSPORELESS1 (MIL1). The mil1 mutant does not produce microspores in anthers but has the normal female fertility. Detailed molecular and cytological investigations demonstrate that mil1 anthers are defective in the meiotic entry of sporogenous cell progenies and in the differentiation of surrounding somatic cell layers, resulting in locules filled with somatic cells instead of microspores. Furthermore, analysis of mil1 msp1 double mutants reveals that due to the absence of MIL1, the cells in their anther locule center do not activate meiotic cell cycle either, generating a similar anther phenotype to mil1. MIL1 encodes a plant-specific CC-type glutaredoxin, which could interact with TGA transcription factors. These results suggest meiotic entry in microsporocytes is directed by an anther-specific mechanism, which requires MIL1 activity, and redox regulation might play important roles in this process.
    The Plant Cell 02/2012; 24(2):577-88. DOI:10.1105/tpc.111.093740 · 9.58 Impact Factor

Preview

Download
2 Downloads
Available from

Yuriko Harigaya