Article

A functional circuit underlying male sexual behaviour in the female mouse brain.

Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.
Nature (Impact Factor: 42.35). 09/2007; 448(7157):1009-14. DOI: 10.1038/nature06089
Source: PubMed

ABSTRACT In mice, pheromone detection is mediated by the vomeronasal organ and the main olfactory epithelium. Male mice that are deficient for Trpc2, an ion channel specifically expressed in VNO neurons and essential for VNO sensory transduction, are impaired in sex discrimination and male-male aggression. We report here that Trpc2-/- female mice show a reduction in female-specific behaviour, including maternal aggression and lactating behaviour. Strikingly, mutant females display unique characteristics of male sexual and courtship behaviours such as mounting, pelvic thrust, solicitation, anogenital olfactory investigation, and emission of complex ultrasonic vocalizations towards male and female conspecific mice. The same behavioural phenotype is observed after VNO surgical removal in adult animals, and is not accompanied by disruption of the oestrous cycle and sex hormone levels. These findings suggest that VNO-mediated pheromone inputs act in wild-type females to repress male behaviour and activate female behaviours. Moreover, they imply that functional neuronal circuits underlying male-specific behaviours exist in the normal female mouse brain.

Full-text

Available from: Tali Kimchi, Jun 15, 2015
1 Follower
 · 
223 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although much evidence reveals sexually dimorphic processing of chemosensory cues by the brain, potential sex differences at more peripheral levels of chemoreception are understudied. In plethodontid salamanders, the volume of the vomeronasal organ (VNO) is almost twice as large in males as compared to females, both in absolute and relative size. To determine whether the structural sexual dimorphism in VNO volume is associated with sex differences in other peripheral aspects of chemosensation, we measured sex differences in chemo-investigation and in responsiveness of the VNO to chemosensory cues. Males and females differed in traits influencing stimulus access to VNO chemosensory neurons. Males chemo-investigated ("nose tapped") neutral substrates and substrates moistened with female body rinses more than did females. Compared to females, males had larger narial structures (cirri) associated with the transfer of substrate-borne chemical cues to the lumen of the VNO. These sex differences in chemo-investigation and narial morphology likely represent important mechanisms for regulating sex differences in chemical communication. In contrast, males and females did not differ in responsiveness of VNO chemosensory neurons to male mental gland extract or female skin secretions. This important result indicates that although males have a substantially larger VNO compared to females, the male VNO was not more responsive to every chemosensory cue that is detected by the VNO. Future studies will determine whether the male VNO is specialized to detect a subset of chemosensory cues, such as female body rinses or female scent marks.
    Hormones and Behavior 09/2008; 54(2):270-7. DOI:10.1016/j.yhbeh.2008.03.009 · 4.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among mice, pheromones and other social odor cues convey information about sex, social status, and identity; however, the molecular nature of these cues is essentially unknown. To identify these cues, we screened chromatographic fractions of female mouse urine for their ability to cause reproducible firing rate increases in the pheromone-detecting vomeronasal sensory neurons (VSNs) using multielectrode array (MEA) recording. Active compounds were found to be remarkably homogenous in their basic properties, with most being of low molecular weight, moderate hydrophobicity, low volatility, and possessing a negative electric charge. Purification and structural analysis of active compounds revealed multiple sulfated steroids, of which two were identified as sulfated glucocorticoids, including corticosterone 21-sulfate. Sulfatase-treated urine extracts lost >80% of their activity, indicating that sulfated compounds are the predominant VSN ligands in female mouse urine. As measured by MEA recording, a collection of 31 synthetic sulfated steroids triggered responses 30-fold more frequently than did a similarly sized stimulus set containing the majority of all previously reported VSN ligands. Collectively, VSNs detected all major classes of sulfated steroids, but individual neurons were sensitive to small variations in chemical structure. VSNs from both males and females detected sulfated steroids, but knock-outs for the sensory transduction channel TRPC2 did not detect these compounds. Urine concentrations of the two sulfated glucocorticoids increased many fold in stressed animals, indicating that information about physiological status is encoded by the urine concentration of particular sulfated steroids. These results provide an unprecedented characterization of the signals available for chemical communication among mice.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 06/2008; 28(25):6407-18. DOI:10.1523/JNEUROSCI.1425-08.2008 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prolactin is required for rapid onset of maternal behavior after parturition, inducing adaptive changes in the maternal brain including enhanced neurogenesis in the subventricular zone during pregnancy. The resultant increase in olfactory interneurons may be required for altered processing of olfactory cues during the establishment of maternal behavior. Pheromones act through olfactory pathways to exert powerful effects on behavior in rodents and also affect prolactin secretion. Hence, this study aimed to investigate the effect of male pheromones on neurogenesis and maternal behavior in female mice. Virgin female mice were housed individually or in split-cages where they had pheromonal but not physical contact with a male. Maternal behavior was assessed in a foster pup retrieval paradigm. Some mice were injected with bromodeoxyuridine, and the labeled cells visualized using immunohistochemistry. The data show that exposure to male pheromones, for a duration equivalent to a murine pregnancy, advanced maternal behavior in both virgin and postpartum female mice. The pheromone action was dependent on prolactin and ovarian steroids, and was associated with increased cell proliferation in the subventricular zone and subsequent increases in new neurons in the olfactory bulb. Moreover, the effect of pheromones on both cell proliferation and maternal behavior could be induced solely through administration of exogenous prolactin to mimic the pheromone-induced changes in prolactin secretion. The data suggest that male pheromones induce a prolactin-mediated increase in neurogenesis in female mice, resulting in advanced maternal behavior.
    Hormones and Behavior 05/2008; 53(4):509-17. DOI:10.1016/j.yhbeh.2007.11.020 · 4.51 Impact Factor