Avian sex determination: what, when and where?

Murdoch Childrens Research Institute and University of Melbourne, Department of Paediatrics, Royal Childrens Hospital, Parkville, Australia.
Cytogenetic and Genome Research (Impact Factor: 1.84). 02/2007; 117(1-4):165-73. DOI: 10.1159/000103177
Source: PubMed

ABSTRACT Sex is determined genetically in all birds, but the underlying mechanism remains unknown. All species have a ZZ/ZW sex chromosome system characterised by female (ZW) heterogamety, but the chromosomes themselves can be heteromorphic (in most birds) or homomorphic (in the flightless ratites). Sex in birds might be determined by the dosage of a Z-linked gene (two in males, one in females) or by a dominant ovary-determining gene carried on the W sex chromosome, or both. Sex chromosome aneuploidy has not been conclusively documented in birds to differentiate between these possibilities. By definition, the sex chromosomes of birds must carry one or more sex-determining genes. In this review of avian sex determination, we ask what, when and where? What is the nature of the avian sex determinant? When should it be expressed in the developing embryo, and where is it expressed? The last two questions arise due to evidence suggesting that sex-determining genes in birds might be operating prior to overt sexual differentiation of the gonads into testes or ovaries, and in tissues other than the urogenital system.

  • The Journal of Poultry Science 01/2010; 47(1):85-88. · 0.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a functional ovary develops on the left, whereas the right gonad regresses. In males, however, testes develop on both sides. We examined the distribution of germ cells using Vasa/Cvh as a marker. Expression is asymmetric in both sexes: at stage 35 the left gonad contains significantly more germ cells than the right. A similar expression pattern is seen for expression of ERNI (Ens1), a gene expressed in chick embryonic stem cells while they self-renew, but downregulated upon differentiation. Other pluripotency-associated markers (PouV/Oct3/4, Nanog and Sox2) also show asymmetric expression (more expressing cells on the left) in both sexes, but this asymmetry is at least partly due to expression in stromal cells of the developing gonad, and the pattern is different for all the genes. Therefore germ cell and pluripotency-associated genes show both sex-dependent and independent left-right asymmetry and a complex pattern of expression.
    PLoS ONE 07/2013; 8(7):e69893. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream of the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed.
    Genetics Selection Evolution 04/2014; 46(1):26. · 3.75 Impact Factor

Full-text (2 Sources)

Available from
Jun 6, 2014