Article

In Vivo Persistence of Codominant Human CD8+ T Cell Clonotypes Is Not Limited by Replicative Senescence or Functional Alteration.

Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland.
The Journal of Immunology (Impact Factor: 5.52). 09/2007; 179(4):2368-79.
Source: PubMed

ABSTRACT T cell responses to viral epitopes are often composed of a small number of codominant clonotypes. In this study, we show that tumor Ag-specific T cells can behave similarly. In a melanoma patient with a long lasting HLA-A2/NY-ESO-1-specific T cell response, reaching 10% of circulating CD8 T cells, we identified nine codominant clonotypes characterized by individual TCRs. These clonotypes made up almost the entire pool of highly differentiated effector cells, but only a fraction of the small pool of less differentiated "memory" cells, suggesting that the latter serve to maintain effector cells. The different clonotypes displayed full effector function and expressed TCRs with similar functional avidity. Nevertheless, some clonotypes increased, whereas others declined in numbers over the observation period of 6 years. One clonotype disappeared from circulating blood, but without preceding critical telomere shortening. In turn, clonotypes with increasing frequency had accelerated telomere shortening, correlating with strong in vivo proliferation. Interestingly, the final prevalence of the different T cell clonotypes in circulation was anticipated in a metastatic lymph node withdrawn 2 years earlier, suggesting in vivo clonotype selection driven by metastases. Together, these data provide novel insight in long term in vivo persistence of T cell clonotypes associated with continued cell turnover but not replicative senescence or functional alteration.

0 Bookmarks
 · 
77 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adaptive immune system plays a critical role in protection at the time of secondary infection. It does so through the rapid and robust reactivation of memory T cells which are maintained long-term, in a phenotypically heterogeneous state, following their primary encounter with Ag. Although most HLA-A*0201/influenza matrix protein(58-66)-specific CD8 T cells from healthy donors display characteristics typical of memory T cells, through our extensive phenotypic analysis we have further shown that up to 20% of these cells express neither the IL-7 receptor CD127 nor the costimulatory molecule CD28. In contrast to the majority of CD28(pos) cells, granzyme B and perforin were frequently expressed by the CD28(neg) cells, suggesting that they are effector cells. Indeed, these cells were able to kill target cells, in an Ag-specific manner, directly ex vivo. Thus, our findings demonstrate the remarkable long-term persistence in healthy humans of not only influenza-specific memory cells, but also of effector T cells. We further observed that granzyme B expression in influenza-specific CD8 T cells paralleled levels in the total CD8 T cell population, suggestive of Ag-nonspecific bystander activation. Sequencing of TCR alpha- and beta-chains showed that the TCR repertoire specific for this epitope was dominated by one, or a few, T cell clonotype per healthy donor. Moreover, our sequencing analysis revealed, for the first time in humans, that identical clonotypes can coexist as both memory and effector T cells, thereby supporting the principle of multipotent clonotypic differentiation.
    The Journal of Immunology 07/2009; 182(11):6718-26. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protection from reactivation of persistent herpes virus infection is mediated by Ag-specific CD8 T cell responses, which are highly regulated by still poorly understood mechanisms. In this study, we analyzed differentiation and clonotypic dynamics of EBV- and CMV-specific T cells from healthy adults. Although these T lymphocytes included all subsets, from early-differentiated (EM/CD28(pos)) to late-differentiated (EMRA/CD28(neg)) stages, they varied in the sizes/proportions of these subsets. In-depth clonal composition analyses revealed TCR repertoires, which were highly restricted for CMV- and relatively diverse for EBV-specific cells. Virtually all virus-specific clonotypes identified in the EMRA/CD28(neg) subset were also found within the pool of less differentiated "memory" cells. However, striking differences in the patterns of dominance were observed among these subsets, because some clonotypes were selected with differentiation while others were not. Late-differentiated CMV-specific clonotypes were mostly characterized by TCR with lower dependency on CD8 coreceptor interaction. Yet all clonotypes displayed similar functional avidities, suggesting a compensatory role of CD8 in the clonotypes of lower TCR avidity. Importantly, clonotype selection and composition of each virus-specific subset upon differentiation was highly preserved over time, with the presence of the same dominant clonotypes at specific differentiation stages within a period of 4 years. Remarkably, clonotypic distribution was stable not only in late-differentiated but also in less-differentiated T cell subsets. Thus, T cell clonotypes segregate with differentiation, but the clonal composition once established is kept constant for at least several years. These findings reveal novel features of the highly sophisticated control of steady state protective T cell activity in healthy adults.
    The Journal of Immunology 08/2009; 183(1):319-31. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that vaccination of HLA-A2 metastatic melanoma patients with the analogue Melan-A(26-35(A27L)) peptide emulsified in a mineral oil induces ex vivo detectable specific CD8 T cells. These are further enhanced when a TLR9 agonist is codelivered in the same vaccine formulation. Interestingly, the same peptide can be efficiently recognized by HLA-DQ6-restricted CD4 T cells. We used HLA-DQ6 multimers to assess the specific CD4 T-cell response in both healthy individuals and melanoma patients. We report that the majority of melanoma patients carry high frequencies of naturally circulating HLA-DQ6-restricted Melan-A-specific CD4 T cells, a high proportion of which express FOXP3 and proliferate poorly in response to the cognate peptide. Upon vaccination, the relative frequency of multimer+ CD4 T cells did not change significantly. In contrast, we found a marked shift to FOXP3-negative CD4 T cells, accompanied by robust CD4 T-cell proliferation upon in vitro stimulation with cognate peptide. A concomitant reduction in TCR diversity was also observed. This is the first report on direct ex vivo identification of antigen-specific FOXP3+ T cells by multimer labeling in cancer patients and on the direct assessment of the impact of peptide vaccination on immunoregulatory T cells.
    Cancer Research 10/2009; 69(20):8085-93. · 9.28 Impact Factor

Full-text (2 Sources)

View
22 Downloads
Available from
Jun 4, 2014