Article

Effects of added trunk load and corresponding trunk position adaptations on lower extremity biomechanics during drop-landings. J Biomech

Department of Health Education and Promotion, East Carolina University, 249 Ward Sports Medicine Building, Greenville, NC 27858, USA.
Journal of Biomechanics (Impact Factor: 2.75). 02/2008; 41(1):180-5. DOI: 10.1016/j.jbiomech.2007.06.027
Source: PubMed

ABSTRACT Although both trunk mass and trunk position have the potential to affect lower extremity biomechanics during landing, these effects are not well understood. Our overall hypothesis stated that both trunk mass and trunk position affect lower extremity biomechanics in landing. Thus, our purpose was to determine the effects of an added trunk load and kinematic trunk adaptation groups on lower extremity joint kinematics, kinetics, and energetics during drop-landings. Twenty-one recreationally active subjects were instrumented for biomechanical analysis. Subjects performed two sets of eight double-limb landings with and without 10% body weight added to the trunk. On lower extremity dependent variables, 2(condition: no load, trunk load)x2(group: trunk extensors vs. trunk flexors) ANOVAs were performed. Condition by group interactions at the hip showed differing responses to the added trunk load between groups where the trunk extensor group decreased hip extensor efforts ( downward decrease 11-18%) while the trunk flexor group increased hip extensor efforts ( upward increase 14-19%). The trunk load increased biomechanical demands at the knee and ankle regardless of trunk adaptation group. However, the percent increases in angular impulses and energy absorption in the trunk extensor group were 14-28% while increases in the trunk flexor group were 4-9%. Given the 10% body weight added to the trunk, the 14-28% increases at the knee and ankle in the trunk extensor group were likely due to the reduced hip extensor efforts during landing. Overall these findings support our overall hypothesis that both trunk mass and trunk position affect lower extremity biomechanics during vertically oriented landing tasks.

2 Followers
 · 
109 Views
  • Source
    • "aumento de la cifosis dorsal) (Granacher et al., 2013) y esto puede que provoque cierta inestabilidad. De hecho, parece que la posición del tronco afecta de forma significativa a las fuerzas musculares de las piernas, especialmente en los isquiosurales, los cuales tienen un papel importante en el equilibrio y la estabilización del tronco (Kulas et al., 2008). Asimismo, la edad también puede que afecte negativamente a este control neuromuscular del tronco. "
    [Show description] [Hide description]
    DESCRIPTION: Los problemas en el control del equilibrio corporal incrementan de manera importante la probabilidad de caídas en personas mayores. Varios autores sugieren que una adecuada capacidad de estabilización del tronco, así como altos niveles de fuerza de su musculatura podrían incrementar el equilibrio corporal, lo cual podría ser beneficioso para disminuir el riesgo de caídas en el adulto mayor. Sin embargo, existe una carencia de evidencias científicas que permitan establecer una relación clara entre la estabilidad y fuerza de tronco y el equilibrio corporal en personas mayores. El objetivo de nuestro estudio fue describir, por un lado, la posible relación entre la estabilidad de tronco en sedestación y la fuerza muscular del tronco sobre el rendimiento en pruebas de equilibrio corporal general y, por otro lado, analizar el efecto de la edad sobre la estabilidad y fuerza de tronco, así como sobre el equilibrio corporal general y sobre la relación que existe entre estas variables. En el estudio participaron 22 mujeres, 11 de ellas de entre 30 y 40 años y 10 de más de 60 años. Todas ellas realizaban actividad física al menos dos días a la semana. Para valorar la estabilidad del tronco se analizó su control postural mediante el paradigma del asiento inestable. Para valorar el equilibrio corporal se analizó el rendimiento en una prueba realizada sobre una plataforma de fuerzas. Para valorar la fuerza muscular se realizó un test de flexión y extensión isométrica del tronco en un dinamómetro isocinético.
  • Source
    • "Blackburn and Padua demonstrated that increased trunk extension upon landing increased the ground reaction force and the quadriceps forces29). Similarly, Kulas et al. reported that increased trunk extension upon landing caused an increase in quadriceps forces and a decrease in hamstring forces30). Increased quadriceps forces lead to anterior tibial displacement, increasing the load on the ACL28, 31). Increased trunk extension is associated with a decrease in the angle of hip joint flexion32). "
    [Show abstract] [Hide abstract]
    ABSTRACT: [Purpose] Increased femoral anteversion may occur with hip internal rotation and valgus knee alignment upon landing and is considered a risk factor for anterior cruciate ligament injury. We examined the relationship between femoral anteversion and joint motion and muscle activity of the lower extremity in terms of the risk factors for anterior cruciate ligament injury. [Subjects] Sixteen healthy females were divided on the basis of femoral anteversion into low and high groups. [Methods] Femoral anteversion was assessed using Craig's test. We performed kinematic analysis and measured the electromyography activity of the lower extremity upon left single-leg landing. [Results] The high group had a significantly lower hip flexion angle and higher knee flexion and valgus angles than the low group. The rectus femoris showed significantly greater electromyography activities in the high group than in the low group. [Conclusion] These results suggest that increased femoral anteversion results in lower hip flexion angle, higher knee valgus alignment, and greater rectus femoris muscle activity, leading to anterior tibial displacement upon single-leg landing. Increased femoral anteversion may be a potential risk factor for anterior cruciate ligament injury.
    Journal of Physical Therapy Science 10/2013; 25(10):1213-1217. DOI:10.1589/jpts.25.1213 · 0.20 Impact Factor
  • Source
    • "Kinematic, kinetic, and EMG data were imported into Visual3D (C- Motion Inc, Rockville, MD) where a five-segment model was constructed of the foot, shank, thigh, pelvis, and trunk (Kulas et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the squat exercise and its variations are commonly prescribed for anterior cruciate ligament rehabilitation, whether trunk position affects these ligament forces and strains during the squat is unclear. Our purpose was to evaluate the effects of trunk position on anterior cruciate ligament forces and strains during a single-leg squat. While instrumented for biomechanical analysis, twelve recreationally active subjects performed single-leg squats with minimal and moderate amounts of forward trunk lean. A combination of inverse dynamics, Hill-type muscle modeling, and mathematical computations estimated anterior cruciate ligament forces, strains and quadriceps, hamstrings, and gastrocnemius forces. The moderate forward trunk lean condition vs. minimal forward trunk lean condition had lower peak anterior cruciate ligament forces (↓24%), strains (↓16%), and average anterior cruciate ligament forces and strains during knee flexion ranges of motion of 25-55°(descent) and 35-55°(ascent). A moderate vs. minimal forward trunk lean also produced 35% higher hamstring forces throughout the majority of the squat, but lower quadriceps forces only at knee flexion angles greater than 65°. Single-leg squats performed with a moderate forward trunk lean (~40°) can minimize anterior cruciate ligament loads. Mechanistically, trunk lean reduced anterior cruciate ligament forces and strains through concomitant modulations in hip flexion angle and biarticular thigh muscle forces. These findings are clinically relevant for anterior cruciate ligament rehabilitation as a common goal is to minimize anterior cruciate ligament forces and strains through enhancing hamstring and quadriceps co-contractions.
    Clinical biomechanics (Bristol, Avon) 08/2011; 27(1):16-21. DOI:10.1016/j.clinbiomech.2011.07.009 · 1.88 Impact Factor
Show more