Anterior regions of monkey parietal cortex process visual 3D shape.

Lab Neuro- en Psychofysiologie, K.U. Leuven, Medical School, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium.
Neuron (Impact Factor: 15.98). 09/2007; 55(3):493-505. DOI: 10.1016/j.neuron.2007.06.040
Source: PubMed

ABSTRACT The intraparietal cortex is involved in the control of visually guided actions, like reach-to-grasp movements, which require extracting the 3D shape and position of objects from 2D retinal images. Using fMRI in behaving monkeys, we investigated the role of the intraparietal cortex in processing stereoscopic information for recovering the depth structure and the position in depth of objects. We found that while several areas (CIP, LIP, and AIP on the lateral bank; PIP and MIP on the medial bank) are activated by stereoscopic stimuli, AIP and an adjoining portion of LIP are sensitive only to depth structure. Furthermore, only these two regions are sensitive to both the depth structure and the 2D shape of small objects. These results indicate that extracting 3D spatial information from stereo involves several intraparietal areas, among which AIP and anterior LIP are more specifically engaged in extracting the 3D shape of objects.


Available from: Guy A Orban, Apr 18, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lateral intraparietal area (LIP) is thought to play an important role in the guidance of where to look and pay attention. LIP can also respond selectively to differently shaped objects. We sought to understand to what extent short-term and long-term experience with visual orienting determines the responses of LIP to objects of different shapes. We taught monkeys to arbitrarily associate centrally presented objects of various shapes with orienting either toward or away from a preferred spatial location of a neuron. The training could last for less than a single day or for several months. We found that neural responses to objects are affected by such experience, but that the length of the learning period determines how this neural plasticity manifests. Short-term learning affects neural responses to objects, but these effects are only seen relatively late after visual onset; at this time, the responses to newly learned objects resemble those of familiar objects that share their meaning or arbitrary association. Long-term learning affects the earliest bottom-up responses to visual objects. These responses tend to be greater for objects that have been associated with looking toward, rather than away from, LIP neurons' preferred spatial locations. Responses to objects can nonetheless be distinct, although they have been similarly acted on in the past and will lead to the same orienting behavior in the future. Our results therefore indicate that a complete experience-driven override of LIP object responses may be difficult or impossible. We relate these results to behavioral work on visual attention.
    Journal of Cognitive Neuroscience 01/2015; DOI:10.1162/jocn_a_00789 · 4.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Single neurons in the frontal eye fields (FEFs) and lateral intraparietal area (LIP) of macaques are preferentially activated by saccade- versus reach-related processes. fMRI studies focusing on saccade- and reach-specific activity in human cortex, however, provided conflicting evidence for effector specificity. To gain further insights into effector preferences throughout monkey cortex using the same technique as in humans, we performed a mixed block/event-related fMRI experiment in macaques. Within single fMRI runs, monkeys alternated between a visually guided saccade task, a visually guided arm movement task, and a fixation-only task requiring no saccades or arm movements. The detection of a peripheral pop-out go cue initiating the required operant behavior and the identification of a target among distractors was identical in the arm and saccade tasks. We found saccade-related activity in parietal areas V6, V6A, LIP, and caudal intraparietal area and frontal areas FEF, 45a, 45b, and 46. Areas 45 and FEF even showed markedly decreased fMRI activity during arm movements relative to fixation only. Conversely, medial and anterior intraparietal areas (MIP and AIP), and parietal area PEip; somatosensory areas S1 and S2; and (pre)motor areas F1, F3, F5, and F6 showed increased arm movement-related activity. F1, F5, PEip, and somatosensory cortex also showed deactivations during saccades relative to fixation only. Control experiments showed that such deactivations in both operant-specific functional networks did not depend on training history or rapid task switching requiring active suppression of the unpreferred operant behavior. Therefore, although both tasks required divided attention to detect a pop-out go cue and target, two largely segregated and mainly effector-driven cortical networks were activated. Copyright © 2015 the authors 0270-6474/15/353446-14$15.00/0.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extrastriate cortical areas are frequently composed of subpopulations of neurons encoding specific features or stimuli, such as color, disparity, or faces, and patches of neurons encoding similar stimulus properties are typically embedded in interconnected networks, such as the attention or face-processing network. The goal of the current study was to examine the effective connectivity of subsectors of neurons in the same cortical area with highly similar neuronal response properties. We first recorded single- and multi-unit activity to identify two neuronal patches in the anterior part of the macaque intraparietal sulcus (IPS) showing the same depth structure selectivity and then employed electrical microstimulation during functional magnetic resonance imaging in these patches to determine the effective connectivity of these patches. The two IPS subsectors we identified-with the same neuronal response properties and in some cases separated by only 3 mm-were effectively connected to remarkably distinct cortical networks in both dorsal and ventral stream in three macaques. Conversely, the differences in effective connectivity could account for the known visual-to-motor gradient within the anterior IPS. These results clarify the role of the anterior IPS as a pivotal brain region where dorsal and ventral visual stream interact during object analysis. Thus, in addition to the anatomical connectivity of cortical areas and the properties of individual neurons in these areas, the effective connectivity provides novel key insights into the widespread functional networks that support behavior.
    PLoS Biology 02/2015; 13(2):e1002072. DOI:10.1371/journal.pbio.1002072 · 11.77 Impact Factor