Accumulation of slightly deleterious mutations in mitochondrial protein-coding genes of large versus small mammals.

Departments of Genetics, Biological Faculty of M.V. Lomonosov Moscow State University, Vorobyevy Gory 1-12, Moscow 119992, Russia.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 09/2007; 104(33):13390-5. DOI: 10.1073/pnas.0701256104
Source: PubMed

ABSTRACT After the effective size of a population, N(e), declines, some slightly deleterious amino acid replacements which were initially suppressed by purifying selection become effectively neutral and can reach fixation. Here we investigate this phenomenon for a set of all 13 mitochondrial protein-coding genes from 110 mammalian species. By using body mass as a proxy for N(e), we show that large mammals (i.e., those with low N(e)) as compared with small ones (in our sample these are, on average, 369.5 kg and 275 g, respectively) have a 43% higher rate of accumulation of nonsynonymous nucleotide substitutions relative to synonymous substitutions, and an 8-40% higher rate of accumulation of radical amino acid substitutions relative to conservative substitutions, depending on the type of amino acid classification. These higher rates result in a 6% greater amino acid dissimilarity between modern species and their most recent reconstructed ancestors in large versus small mammals. Because nonsynonymous substitutions are likely to be more harmful than synonymous substitutions, and radical amino acid substitutions are likely to be more harmful than conservative ones, our results suggest that large mammals experience less efficient purifying selection than small mammals. Furthermore, because in the course of mammalian evolution body size tends to increase and, consequently, N(e) tends to decline, evolution of mammals toward large body size may involve accumulation of slightly deleterious mutations in mitochondrial protein-coding genes, which may contribute to decline or extinction of large mammals.

Download full-text


Available from: Konstantin Gunbin, Jul 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patterns and processes of molecular evolution critically influence inferences in phylogeny and phylogeography. Within primates, a shift in evolutionary rates has been identified as the rationale for contrasting findings from mitochondrial and nuclear DNA studies as to the position of Tarsius. While the latter now seems settled, we sequenced complete mitochondrial genomes of three Sulawesi tarsiers (Tarsius dentatus, T. lariang, and T. wallacei) and analyzed substitution rates among tarsiers and other primates to infer driving processes of molecular evolution. We found substantial length polymorphism of the D-loop within tarsier individuals, but little variation of predominant lengths among them, regardless of species. Length variation was due to repetitive elements in the CSB domain-minisatellite motifs of 35 bp length and microsatellite motifs of 6 bp length. Amino acid evolutionary rates were second highest among major primate taxa relative to nucleotide substitution rates. We observed many radical possibly function-altering amino acid changes that were rarely driven by positive selection and thus potentially slightly deleterious or neutral. We hypothesize that the observed pattern of an increased amino acid evolutionary rate in tarsier mitochondrial genomes may be caused by hitchhiking of slightly deleterious mutations with favored D-loop length variants selected for maximizing replication success within the cell or the mitochondrion.
    Journal of Molecular Evolution 07/2014; 79(1-2). DOI:10.1007/s00239-014-9631-2 · 1.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: What at the genomic level underlies organism complexity? Although several genomic features have been associated with organism complexity, in the case of alternative splicing, which has long been proposed to explain the variation in complexity, no such link has been established. Here, we analyzed over 39 million expressed sequence tags available for 47 eukaryotic species with fully sequenced genomes to obtain a comparable index of alternative splicing estimates, which corrects for the distorting effect of a variable number of transcripts per species-an important obstacle for comparative studies of alternative splicing. We find that alternative splicing has steadily increased over the last 1,400 My of eukaryotic evolution and is strongly associated with organism complexity, assayed as the number of cell types. Importantly, this association is not explained as a by-product of covariance between alternative splicing with other variables previously linked to complexity including gene content, protein length, proteome disorder, and protein interactivity. In addition, we found no evidence to suggest that the relationship of alternative splicing to cell type number is explained by drift due to reduced Ne in more complex species. Taken together, our results firmly establish alternative splicing as a significant predictor of organism complexity and are, in principle, consistent with an important role of transcript diversification through alternative splicing as a means of determining a genome's functional information capacity.
    Molecular Biology and Evolution 03/2014; 31(6). DOI:10.1093/molbev/msu083 · 14.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cetaceans, early in their evolutionary history, had developed many physiological adaptations to secondarily return to the sea. Among these adaptations, changes in molecules that transport oxygen and that ultimately support large periods of acute tissue hypoxia probably represent one big step toward the conquest of aquatic environments. Myoglobin contributes to intracellular oxygen storage and transcellular diffusion of oxygen in muscle, and plays an important role in supplying oxygen in hypoxic or ischemic conditions. Here we looked for evidence of adaptive molecular evolution of myoglobin in the cetacean lineage, relative to their terrestrial counterparts. We performed a comparative analysis to examine the variation of the parameter ω (d N/d S) and infer past period of adaptive evolution during the cetacean transition from the terrestrial to the aquatic environment. We also analyzed the changes in amino acid properties. At the nucleotide level, the results showed significant differences in selective pressure between cetacean and non-cetacean myoglobin (ω value three times higher in cetaceans when compared to terrestrial mammals), and also among cetacean lineages according to their diving capacities. Interestingly, both families with long duration diving cetaceans present two parallel substitutions (on sites 4 and 12). Regarding the amino acid properties, our analysis identified four significant physicochemical amino acid changes among residues in myoglobin protein under positive destabilizing selection.
    Journal of Molecular Evolution 07/2013; 76(6). DOI:10.1007/s00239-013-9572-1 · 1.86 Impact Factor