Article

In vivo effects of bisphenol A in laboratory rodent studies.

U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, United States.
Reproductive Toxicology (Impact Factor: 2.77). 08/2007; 24(2):199-224. DOI: 10.1016/j.reprotox.2007.06.004
Source: PubMed

ABSTRACT Concern is mounting regarding the human health and environmental effects of bisphenol A (BPA), a high-production-volume chemical used in synthesis of plastics. We have reviewed the growing literature on effects of low doses of BPA, below 50 mg/(kg day), in laboratory exposures with mammalian model organisms. Many, but not all, effects of BPA are similar to effects seen in response to the model estrogens diethylstilbestrol and ethinylestradiol. For most effects, the potency of BPA is approximately 10-1000-fold less than that of diethylstilbestrol or ethinylestradiol. Based on our review of the literature, a consensus was reached regarding our level of confidence that particular outcomes occur in response to low dose BPA exposure. We are confident that adult exposure to BPA affects the male reproductive tract, and that long lasting, organizational effects in response to developmental exposure to BPA occur in the brain, the male reproductive system, and metabolic processes. We consider it likely, but requiring further confirmation, that adult exposure to BPA affects the brain, the female reproductive system, and the immune system, and that developmental effects occur in the female reproductive system.

1 Bookmark
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The potential of agricultural waste materials for the removal bisphenol A (BPA) from aqueous solution was investigated. BPA is an endocrine-disrupting compound (EDC) used mainly in the plastic manufacturing industry. It may be hazardous to humans and animals because of its estrogenic activity. Agricultural wastes are sustainable adsorbents because of their low cost and availability. Hence, this study investigated the removal of BPA from water by adsorption onto treated coir pith, coconut shell and durian peel. The adsorption of BPA from water onto adsorbent was evaluated using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET). The effects of morphology, functional groups, and surface area on adsorption before and after pretreatment with sulfuric acid and reaction were investigated, and it was found that the treated adsorbent were able to remove BPA. Carbonyl and hydroxyl groups had appear in large number in FTIR analysis. The present study indicates that coir pith had removed 72 % of BPA with adsorption capacity of 4.308 mg/g for 24 h, followed by durian peel (70 %, 4.178 mg/g) and coconut shell (69 %, 4.159 mg/g). The results proved that these modified phyto-waste were promising materials as alternative adsorbent for the removal of BPA from aqueous solution.
    Water Air and Soil Pollution 03/2015; 226(3). DOI:10.1007/s11270-015-2318-5 · 1.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bisphenol A (BPA) is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER) is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal en-dogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base exci-sion repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO 3) or laser irradiation as oxidative damaging agents. In experiments with KBrO 3 , co-treatment with BPA partially reversed the KBrO 3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway.
    PLoS ONE 02/2015; 10(2):e0118819. DOI:10.1371/journal.pone.0118819 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physiologically based pharmacokinetic (PBPK) models integrate both chemical- and system-specific information into a mathematical framework, offering a mechanistic approach to predict the internal dose metrics of a chemical and an ability to perform species and dose extrapolations. Bisphenol A (BPA), because of its ubiquitous presence in a variety of consumer products, has received a considerable amount of attention from the public and regulatory bodies. PBPK models using deuterated BPA were developed for immature and adult rats and non-human primates and for adult humans to understand better the dosimetry of BPA. The focus of the present paper is to provide a rationale for interpreting species- and age-related pharmacokinetics of BPA. Gastrointestinal tract metabolism was an important consideration to predict unconjugated BPA serum kinetic profiles in adult and immature rats and monkeys. Biliary excretion and enterohepatic recirculation of BPA conjugates (BPA-c) accounted for the slowed systemic clearance of BPA-c in rats. For monkeys, renal reabsorption was proposed as a mechanism influencing systemic clearance of BPA-c. The quantitative understanding of the processes driving the pharmacokinetics of BPA across different species and life stages using a computational modeling approach provides more confidence in the interpretation of human biomonitoring data and the extrapolation of experimental animal findings to humans.
    Frontiers in Pharmacology 01/2014; 5:292. DOI:10.3389/fphar.2014.00292

Full-text

Download
64 Downloads
Available from
May 21, 2014