Article

Receptor subtype-specific modulation by dopamine of glutamatergic responses in striatal medium spiny neurons

Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92-019, Auckland, New Zealand.
Brain Research (Impact Factor: 2.83). 02/2003; 959(2):251-62. DOI: 10.1016/S0006-8993(02)03757-5
Source: PubMed

ABSTRACT The output of GABAergic medium-sized spiny neurons in the dorsal striatum is controlled in part by glutamatergic input from the neocortex and the thalamus, and dopaminergic input from ventral midbrain. We acutely isolated these neurons from juvenile (P14-24) rats to study the consequences of the interaction between glutamate and dopamine for neuronal excitability. Single-cell RT-PCR analysis was used to identify the expression patterns of dopamine receptors. D1 and D2 dopamine receptor mRNA was detected in 11/22 and 3/22 of isolated neurons, respectively. Receptor mRNA co-expression was detected in 1/22 cells tested. Whole-cell voltage clamp recording (V(h)=-70 mV) was combined with local or bath application of dopaminergic and glutamatergic agonists to explore dopamine receptor modulation of glutamatergic excitation. Glutamate-evoked inward currents (5 microM, Mg(2+)-free, 1 microM glycine) were attenuated by dopamine (5 microM) to 83.2+/-3.6% (n=31). NMDA-evoked (20 microM), APV-sensitive currents were attenuated by dopamine to 80.9+/-4.5% (n=24). NMDA-induced responses were also attenuated by the D1 receptor agonist SKF 38393 (1 microM; n=28), while the D2/3 receptor agonist quinpirole (10 microM) had no effect. The currents evoked by application of AMPA (5 microM) displayed a steady rundown. Application of dopamine abolished or significantly reduced the rundown in the cells tested (n=17). A similar effect was observed after the application of SKF 38393 (1 microM), while quinpirole (10 microM) had no significant effect. Our results provide direct evidence for modulation by dopamine of glutamatergic responses of striatal medium spiny neurons, and demonstrate that the effects of this neuromodulator are receptor subtype specific. Disruption of this modulatory effect is likely to contribute to movement disorders associated with Parkinson's disease.

1 Follower
 · 
68 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the many neuromodulators used by the mammalian brain to regulate circuit function and plasticity, dopamine (DA) stands out as one of the most behaviorally powerful. Perturbations of DA signaling are implicated in the pathogenesis or exploited in the treatment of many neuropsychiatric diseases, including Parkinson's disease (PD), addiction, schizophrenia, obsessive compulsive disorder, and Tourette's syndrome. Although the precise mechanisms employed by DA to exert its control over behavior are not fully understood, DA is known to regulate many electrical and biochemical aspects of neuronal function including excitability, synaptic transmission, integration and plasticity, protein trafficking, and gene transcription. In this Review, we discuss the actions of DA on ionic and synaptic signaling in neurons of the prefrontal cortex and striatum, brain areas in which dopaminergic dysfunction is thought to be central to disease.
    Neuron 10/2012; 76(1):33-50. DOI:10.1016/j.neuron.2012.09.023 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dopamine and L: -glutamate are important signals which guide the development of functional neural circuits within the striatal complex. Disequilibrium of these neurotransmitter systems is believed to be etiological for the genesis of neurological and psychiatric diseases. Since dopamine plays a crucial role for the early transmitter-regulated differentiation of striatal GABAergic neurons, we emphasized that dopaminergic transmission may also be involved in the fine tuning of intra-striatal glutamate action. In this study, we report that dopamine decreases the expression of the glutamate transporter GLT1 but not GLAST in striatal astrocytes by measuring gene and protein expression. Using glutamate-uptake approaches, we demonstrate an increase in glutamate clearance of externally added glutamate in dopamine-treated cultures compared to controls. Our findings imply that dopamine regulates the availability of L: -glutamate in the developing striatum. It is also suggested that the application of dopaminergic drugs can interfere with ontogenetic processes within the striatal complex.
    Journal of Molecular Neuroscience 09/2009; 39(3):372-9. DOI:10.1007/s12031-009-9273-9 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NMDA receptors are of particular importance in the control of synaptic strength and integration of synaptic activity. Dopamine receptor modulation of NMDA receptors in neonatal striatum may influence the efficacy of synaptic transmission in the cortico-striatal pathway and if so, this modulation will affect the behaviour of the basal ganglia network. Here, we show that in acute brain slices of neonatal (P7) rat striatum the dopamine D1 receptor agonist SKF-82958 significantly decreases NMDA receptor currents in patch-clamp whole-cell recordings. This inhibition is not abolished by application of a G protein inhibitor (GDP-beta-S) or irreversible G protein activator (GTP-gamma-S) suggesting a G protein-independent mechanism. In addition, intracellular application of protein tyrosine kinase inhibitors (lavendustin A or PP2) abolished D1 inhibition of NMDA currents. In contrast, in older animals (P28) D1 receptor activation produces a potentiation of the NMDA response which suggests there is a developmental switch in D1 modulation of striatal NMDA receptors. Single-channel recordings show that direct D1 receptor inhibition of NMDA receptors cannot be observed in isolated membrane patches. We hypothesize that D1 inhibition in whole-cell recordings from neonatal rats may be mediated by a change in NMDA receptor trafficking. Consistent with this hypothesis, intracellular application of a dynamin inhibitory peptide (QVPSRPNRAP) abolished D1 inhibition of NMDA receptor currents. We therefore conclude that a tyrosine kinase-dependent alteration of NMDA receptor trafficking underlies D1 dopamine receptor-mediated down-regulation of NMDA receptor currents in medium spiny neurons of neonatal rat striatum.
    The Journal of Physiology 09/2008; 586(Pt 19):4693-707. DOI:10.1113/jphysiol.2008.158931 · 4.54 Impact Factor