Article

Differential B-cell responses are induced by Mycobacterium tuberculosis PE antigens Rv1169c, Rv0978c, and Rv1818c.

Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
Clinical and Vaccine Immunology (Impact Factor: 2.6). 11/2007; 14(10):1334-41. DOI: 10.1128/CVI.00181-07
Source: PubMed

ABSTRACT The multigene PE and PPE family represents about 10% of the genome of Mycobacterium tuberculosis. Here, we report that three members of the PE family, namely, Rv1169c, Rv0978c, and Rv1818c, elicit a strong, but differential, B-cell humoral response among different clinical categories of tuberculosis patients. The study population (n = 211) was comprised of different clinical groups of both adult and child patients: group 1 (n = 94) patients with pulmonary infection, group 2 (n = 30) patients with relapsed infection, group 3 (n = 31) patients with extrapulmonary infections, and clinically healthy donors (n = 56). Among the PE proteins studied, group 1 adult patient sera reacted to Rv1818c and Rv0978c, while Rv1169c elicited immunoreactivity in group 3 children. However, all three PE antigens studied as well as the 19-kDa antigen did not demonstrate humoral reactivity with sera from group 2 patients with relapsed infection. The current study shows that while responsiveness to all three PE antigens is a good marker for M. tuberculosis infection, a strong response to Rv0978c or to Rv1818c by group 1 adult patients with pulmonary infection or largely restricted reactivity to Rv1169c antigen in child patients with extrapulmonary infections offers the possibility of differential utility in the serodiagnosis of tuberculosis.

0 Bookmarks
 · 
100 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptor 2 (TLR2), a member of pattern recognition receptors (PRRs) abundant on macrophages, dendritic cells (DCs) and respiratory epithelial cells lining the lung, plays critical role in host immune response against Mycobacterium tuberculosis (MTB) infection. TLR2-mediated elimination of MTB involves multiple pathways such as promoting DCs maturation, generating biased Th1, Th2, Th17 type response, regulating the macrophage activation and cytokine secretion. MTB can also hijack the TLR2 signaling to subvert the host immunity by dampening the macrophages response to IFN-γ, suppressing the processing and presentation of antigens. This review summarizes the intricate network of TLR2-mediated signaling and Mycobacteria effectors involved in MTB –host interaction with an aim to find better target for improved tuberculosis control, especially the host-derived therapy targets. TLR2 agonists with potential to be included in novel tuberculosis vaccines are also discussed.
    Biochimie 01/2014; · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The immunological mechanisms that modulate protection during Mycobacterium tuberculosis (Mtb) infection or vaccination are not fully understood. Secretion of IFN-γ and, to a lesser extent, of IL-17 by CD4(+) T cells plays a major role both in protection and immunopathology. Few Mtb Ags interacting with DCs affect priming, activation and regulation of Ag-unrelated CD4(+) T-cell responses. Here we demonstrate that PstS1, a 38 kDa-lipoprotein of Mtb, promotes Ag-independent activation of memory T lymphocytes specific for Ag85B or Ag85A, two immunodominant protective Ags of Mtb. PstS1 expands CD4(+) and CD8(+) memory T cells, amplifies secretion of IFN-γ and IL-22 and induces IL-17 production by effector memory cells in an Ag-unrelated manner in vitro and in vivo. These effects were mediated through the stimulation of DCs, particularly of the CD8α(-) subtype, which respond to PstS1 by undergoing phenotypic maturation and by secreting IL-6, IL-1β and, to a lower extent, IL-23. IL-6 secretion by PstS1-stimulated DCs was required for IFN-γ, and to a lesser extent for IL-22 responses by Ag85B-specific memory T cells. These results may open new perspectives for immunotherapeutic strategies to control Th1/Th17 immune responses in Mtb infections and in vaccinations against tuberculosis. This article is protected by copyright. All rights reserved.
    European Journal of Immunology 05/2013; · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis (TB) remains a serious threat to global public health, largely due to the successful manipulation of the host immunity by its etiological agent Mycobacterium tuberculosis. The PE_PGRS protein family of M. tuberculosis might be a contributing factor. To investigate the roles of PE_PGRS17, the gene of PE_PGRS 17 was expressed in nonpathogenic fast growing Mycobacterium smegmatis. We found that the recombinant strain survives better than the control in macrophage cultures, accompanied by more host cell death and a marked higher secretion of tumor necrosis factor-alpha by a recombinant strain compared with control. Blocking the action of Erk kinase by an inhibitor can abolish the above effects. In brief, our data showed that PE_PGRS 17 might facilitate pathogen survival and disserve the host cell via remodeling the macrophages immune niche largely consisting of inflammatory cytokines. This furnishes a novel insight into the immune role of this mycobacterium unique gene family.
    Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research 05/2013; · 1.63 Impact Factor

Full-text (2 Sources)

Download
34 Downloads
Available from
Jun 4, 2014