Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination.

Department of Pathology, The University of Chicago, Chicago, Illinois, USA.
American Journal Of Pathology (Impact Factor: 4.6). 10/2007; 171(3):882-92. DOI: 10.2353/ajpath.2007.070220
Source: PubMed

ABSTRACT AvrA is a newly described bacterial effector existing in Salmonella. Here, we test the hypothesis that AvrA is a deubiquitinase that removes ubiquitin from two inhibitors of the nuclear factor-kappaB (NF-kappaB) pathway, IkappaBalpha and beta-catenin, thereby inhibiting the inflammatory responses of the host. The role of AvrA was assessed in intestinal epithelial cell models and in mouse models infected with AvrA-deficient and -sufficient Salmonella strains. We also purified AvrA and AvrA mutant proteins and characterized their deubiquitinase activity in a cell-free system. We investigated target gene and inflammatory cytokine expression, as well as effects on epithelial cell proliferation and apoptosis induced by AvrA-deficient and -sufficient bacterial strains in vivo. Our results show that AvrA blocks degradation of IkappaBalpha and beta-catenin in epithelial cells. AvrA deubiquitinates IkappaBalpha, which blocks its degradation and leads to the inhibition of NF-kappaB activation. Target genes of the NF-kappaB pathway, such as interleukin-6, were correspondingly down-regulated during bacterial infection with Salmonella expressing AvrA. AvrA also deubiquitinates and thus blocks degradation of beta-catenin. Target genes of the beta-catenin pathway, such as c-myc and cyclinD1, were correspondingly up-regulated with AvrA expression. Increased beta-catenin further negatively regulates the NF-kappaB pathway. Our findings suggest an important role for AvrA in regulating host inflammatory responses through NF-kappaB and beta-catenin pathways.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salmonellosis is the most frequent foodborne disease worldwide and can be transmitted to humans by a variety of routes, especially via animal and plant products. Salmonella bacteria are believed to use not only animal and human but also plant hosts despite their evolutionary distance. This raises the question if Salmonella employs similar mechanisms in infection of these diverse hosts. Given that most of our understanding comes from its interaction with human hosts, we investigate here to what degree knowledge of Salmonella-human interactions can be transferred to the Salmonella-plant system. Reviewed are recent publications on analysis and prediction of Salmonella-host interactomes. Putative protein-protein interactions (PPIs) between Salmonella and its human and Arabidopsis hosts were retrieved utilizing purely interolog-based approaches in which predictions were inferred based on available sequence and domain information of known PPIs, and machine learning approaches that integrate a larger set of useful information from different sources. Transfer learning is an especially suitable machine learning technique to predict plant host targets from the knowledge of human host targets. A comparison of the prediction results with transcriptomic data shows a clear overlap between the host proteins predicted to be targeted by PPIs and their gene ontology enrichment in both host species and regulation of gene expression. In particular, the cellular processes Salmonella interferes with in plants and humans are catabolic processes. The details of how these processes are targeted, however, are quite different between the two organisms, as expected based on their evolutionary and habitat differences. Possible implications of this observation on evolution of host-pathogen communication are discussed.
    Frontiers in Microbiology 01/2015; 6:45. DOI:10.3389/fmicb.2015.00045 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitin modification has various functions in the host innate immune system in response to the bacterial infection. To counteract the host immunity, Salmonella can specifically target ubiquitin pathways by its effector proteins. In this review, we describe the multiple facets of ubiquitin function during infection with Salmonella enterica Typhimurium and hypothesize how these studies on the host-pathogen interactions can help to understand the general function of the ubiquitination pathway in the host cell.
    Frontiers in Immunology 11/2014; 5:558. DOI:10.3389/fimmu.2014.00558
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Salmonella type III secretory system secretes virulence proteins, called effectors. Effectors are responsible for the alteration of tight junctions (TJ) and epithelial functions in intestinal infection and inflammation. In a previous study, we have demonstrated that a bacterial effector AvrA plays a role in stabilizing TJs and balancing the opposing action of other bacterial effectors. However, the molecular mechanisms by which AvrA-modulates TJ protein expression remain unknown. AvrA possesses acetyltransferase activity toward specific mitogen-activated protein kinase kinases (MAPKKs) and potently inhibits the c-Jun N-terminal kinase (JNK) pathway in inflammation. Inhibition of the JNK pathway is known to inhibit the TJ protein disassemble. Therefore, we hypothesize that AvrA stabilizes intestinal epithelial TJs via c-Jun and JNK pathway blockage. Using both in vitro and in vivo models, we showed that AvrA targets the c-Jun and JNK pathway that in turn stabilizes TJ protein ZO-1. Inhibition of JNK abolished the effect of AvrA on ZO-1. We further determined that AvrA suppressed the transcription factor activator protein-1, which was regulated by activated JNK. Moreover, we identified the functional domain of AvrA that directly regulated TJs using a series of AvrA mutants. The role of AvrA represents a highly refined bacterial strategy that helps the bacteria survive in the host and dampens the inflammatory response of the host. Our findings have uncovered a novel role of the bacterial protein AvrA in suppressing the inflammatory response of the host through JNK-regulated blockage of epithelial cell barrier function.
    01/2015; 3(1-2):e972849. DOI:10.4161/21688362.2014.972849