Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination.

Department of Pathology, The University of Chicago, Chicago, Illinois, USA.
American Journal Of Pathology (Impact Factor: 4.52). 10/2007; 171(3):882-92. DOI:10.2353/ajpath.2007.070220
Source: PubMed

ABSTRACT AvrA is a newly described bacterial effector existing in Salmonella. Here, we test the hypothesis that AvrA is a deubiquitinase that removes ubiquitin from two inhibitors of the nuclear factor-kappaB (NF-kappaB) pathway, IkappaBalpha and beta-catenin, thereby inhibiting the inflammatory responses of the host. The role of AvrA was assessed in intestinal epithelial cell models and in mouse models infected with AvrA-deficient and -sufficient Salmonella strains. We also purified AvrA and AvrA mutant proteins and characterized their deubiquitinase activity in a cell-free system. We investigated target gene and inflammatory cytokine expression, as well as effects on epithelial cell proliferation and apoptosis induced by AvrA-deficient and -sufficient bacterial strains in vivo. Our results show that AvrA blocks degradation of IkappaBalpha and beta-catenin in epithelial cells. AvrA deubiquitinates IkappaBalpha, which blocks its degradation and leads to the inhibition of NF-kappaB activation. Target genes of the NF-kappaB pathway, such as interleukin-6, were correspondingly down-regulated during bacterial infection with Salmonella expressing AvrA. AvrA also deubiquitinates and thus blocks degradation of beta-catenin. Target genes of the beta-catenin pathway, such as c-myc and cyclinD1, were correspondingly up-regulated with AvrA expression. Increased beta-catenin further negatively regulates the NF-kappaB pathway. Our findings suggest an important role for AvrA in regulating host inflammatory responses through NF-kappaB and beta-catenin pathways.

0 0
1 Bookmark
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The human body is constantly challenged by a variety of commensal and pathogenic microorganisms that trigger the immune system. Central in the first line of defense is the pattern-recognition receptor (PRR)-induced stimulation of the nuclear factor κB (NFκB) pathway, leading to NFκB activation. The subsequent production of pro-inflammatory cytokines and/or antimicrobial peptides results in recruitment of professional phagocytes and bacterial clearance. To overcome this, bacteria have developed mechanisms for targeted interference in every single step in the PRR-NFκB pathway to dampen host inflammatory responses. This review aims to briefly overview the PRR-NFκB pathway in relation to the immune response and give examples of the diverse bacterial evasion mechanisms including changes in the bacterial surface, decoy production and injection of effector molecules. Targeted regulation of inflammatory responses is needed and bacterial molecules developed for immune evasion could provide future anti-inflammatory agents.
    Microbiology 07/2013; · 3.06 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Intracellular replication of Salmonella enterica requires effector proteins translocated across the Salmonella-containing vacuolar membrane by Salmonella pathogenicity island-2 (SPI-2) encoded type III secretion system (T3SS). The SPI-2 T3SS effector SseL is a deubiquitinase that contributes to virulence in mice. Previous work has produced conflicting evidence as to the involvement of SseL in interference with the NF-κB pathway. To attempt to clarify these discrepancies, we compared mRNA levels in mouse primary bone marrow-derived macrophages infected with wild-type or sseL mutant strains using a genome-wide microarray. There was no detectable effect of loss of SseL on mRNA levels corresponding to any known NF-κB-regulated gene. In addition, there was no effect of SseL on (i) the activation or levels of both the canonical inhibitor of the NF-κB pathway (IκBα and phospho-IκBα), and the non-canonical NF-κB precursor p100/p52, (ii) the translocation of the NF-κB transcription factor p65 to the nucleus of infected macrophages and (iii) pro-inflammatory cytokines secretion. Furthermore, ectopic expression of SseL did not affect NF-κB activation in reporter cell lines. These results fail to support a role for SseL in the down-regulation of the host immune response and in particular the NF-κB pathway.
    PLoS ONE 01/2013; 8(1):e53064. · 3.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: The aim of this study was to identify transcription factors/regulators that play a crucial role in steering the (innate) immune response shortly (within a few hours) after the first contact of the intestinal mucosa with an inflammatory mediator, and to test whether the processes regulated by these factors/regulators can be modulated by chemical substances of natural origin. METHODS: We experimentally induced inflammation by perfusion of surgically applied jejunal loops with Salmonella enterica subspecies enterica serovar Typhimurium DT104 in three pigs. Segments of mock and Salmonella treated loops were dissected after 2, 4 and 8 hours of perfusion. IL8 and IL1-beta mRNA expression levels were measured in mucosal scrapings of all segments. Furthermore, intra-animal microarray comparisons (isogenic) between Salmonella and mock treated segments after 8 hours, and inter-animal comparisons between similar Salmonella-treated loops of each pig at 2 and 4 hours, were performed. RESULTS: IL-1beta and IL8 mRNA levels, and intra-animal microarray comparisons at 8 hours between Salmonella and mock treated segments showed that the response-time and type of response to Salmonella was different in all three pigs. This plasticity allowed us to extract a comprehensive set of differentially expressed genes from inter-animal comparisons at 2 and 4 hours. Pathway analysis indicated that many of these genes play a role in induction and/or tempering the inflammatory response in the intestine. Among them a set of transcription factors/regulators known to be involved in regulation of inflammation, but also factors/regulators for which involvement was not expected. Nine out of twenty compounds of natural origin, which according to literature had the potential to modulate the activity of these factors/regulators, were able to stimulate or inhibit a Salmonella-induced mRNA response of inflammatory-reporter genes IL8 and/or nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha in cultured intestinal porcine epithelial cells. CONCLUSIONS: We describe a set of transcription factors/regulators possibly involved in regulation of "very early" immune mechanism which determines the inflammatory status of the intestine later on. In addition, we show that these mechanisms may be modulated by chemical substances of natural origin.
    Journal of Inflammation 04/2013; 10(1):18. · 2.55 Impact Factor

Full-text (2 Sources)

Available from
Nov 20, 2013