Article

Selection using the alpha-1 integrin (CD49a) enhances the multipotentiality of the mesenchymal stem cell population from heterogeneous bone marrow stromal cells.

Laboratory of Stem Cells and Tissue Repair, Institute of Molecular and Cell Biology, Singapore, Singapore.
Journal of Molecular Histology (Impact Factor: 1.98). 11/2007; 38(5):449-58. DOI: 10.1007/s10735-007-9128-z
Source: PubMed

ABSTRACT Bone marrow-derived mesenchymal stem cells consist of a developmentally heterogeneous population of cells obtained from colony forming progenitors. As these colonies express the alpha-1 integrin (CD49a), here we single-cell FACS sorted CD49a+ cells from bone marrow in order to create clones and then compared their colony forming efficiency and multilineage differentiation capacity to the unsorted cells. Following selection, 40% of the sorted CD49a+ cells formed colonies, whereas parental cells failed to form colonies following limited dilution plating at 1 cell/well. Following ex vivo expansion, clones shared a similar morphology to the parental cell line, and also demonstrated enhanced proliferation. Further analysis by flow cytometry using a panel of multilineage markers demonstrated that the CD49a+ clones had enhanced expression of CD90 and CD105 compared to unsorted cells. Culturing cells in adipogenic, osteogenic or chondrogenic medium for 7, 10 and 15 days respectively and then analysing them by quantitative PCR demonstrated that CD49a+ clones readily underwent multlineage differentiation into fat, bone and cartilage compared to unsorted cells. These results thus support the use of CD49a selection for the enrichment of mesenchymal stem cells, and describes a strategy for selecting the most multipotential cells from a heterogeneous pool of bone marrow mononuclear stem cells.

0 Bookmarks
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the applications of bone marrow stromal cells (BMSCs) that are produced by ex vivo expansion is for use in in vivo bone tissue engineering. Cultured stromal cells are a mixture of cells at different stages of commitment and expansion capability, leading to a heterogeneous cell population that each time can differ in the potential to form in vivo bone. A parameter that predicts for in vivo bone forming capacity is thus far lacking. We employed single colony-derived BMSC cultures to identify such predictive parameters. Using limiting dilution, we have produced sixteen single CFU-F derived BMSC cultures from human bone marrow and found that only five of these formed bone in vivo. The single colony-derived BMSC strains were tested for proliferation, osteogenic-, adipogenic- and chondrogenic differentiation capacity and the expression of a variety of associated markers. The only robust predictors of in vivo bone forming capacity were the induction of alkaline phosphatase, (ALP) mRNA levels and ALP activity during in vitro osteogenic differentiation. The predictive value of in vitro ALP induction was confirmed by analyzing "bulk-cultured" BMSCs from various bone marrow biopsies. Our findings show that in BMSCs, the additional increase in ALP levels over basal levels during in vitro osteogenic differentiation is predictive of in vivo performance.
    Stem Cell Research 12/2013; 12(2):428-440. · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human chorionic mesenchymal stem/stromal cells (CMSCs) derived from the placenta are similar to adult tissue-derived MSCs. The aim of this study was to investigate the role of these cells in normal placental development. Transcription factors, particularly members of the homeobox gene family, play crucial roles in maintaining stem cell proliferation and lineage specification in embryonic tissues. In adult tissues and organs, stem cells proliferate at low levels in their niche until they receive cues from the microenvironment to differentiate. The homeobox genes that are expressed in the CMSC niche in placental tissues have not been identified. We used the novel strategy of laser capture microdissection to isolate the stromal component of first trimester villi and excluded the cytotrophoblast and syncytiotrophoblast layers that comprise the outer layer of the chorionic villi. Microarray analysis was then used to screen for homeobox genes in the microdissected tissue. Candidate homeobox genes were selected for further RNA analysis. Immunohistochemistry of candidate genes in first trimester placental villous stromal tissue revealed homeobox genes Meis1, myeloid ectropic viral integration site 1 homolog 2 (MEIS2), H2.0-like Drosophila (HLX), transforming growth factor β-induced factor (TGIF), and distal-less homeobox 5 (DLX5) were expressed in the vascular niche where CMSCs have been shown to reside. Expression of MEIS2, HLX, TGIF, and DLX5 was also detected in scattered stromal cells. Real-time polymerase chain reaction and immunocytochemistry verified expression of MEIS2, HLX, TGIF, and DLX5 homeobox genes in first trimester and term CMSCs. These data suggest a combination of regulatory homeobox genes is expressed in CMSCs from early placental development to term, which may be required for stem cell proliferation and differentiation.
    Reproductive sciences (Thousand Oaks, Calif.) 04/2014; · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the applications of bone marrow stromal cells (BMSCs) that are produced by ex vivo expansion is for use in in vivo bone tissue engineering. Cultured stromal cells are a mixture of cells at different stages of commitment and expansion capability, leading to a heterogeneous cell population that each time can differ in the potential to form in vivo bone. A parameter that predicts for in vivo bone forming capacity is thus far lacking. We employed single colony-derived BMSC cultures to identify such predictive parameters. Using limiting dilution, we have produced sixteen single CFU-F derived BMSC cultures from human bone marrow and found that only five of these formed bone in vivo. The single colony-derived BMSC strains were tested for proliferation, osteogenic-, adipogenic- and chondrogenic differentiation capacity and the expression of a variety of associated markers. The only robust predictors of in vivo bone forming capacity were the induction of alkaline phosphatase, (ALP) mRNA levels and ALP activity during in vitro osteogenic differentiation. The predictive value of in vitro ALP induction was confirmed by analyzing “bulk-cultured” BMSCs from various bone marrow biopsies. Our findings show that in BMSCs, the additional increase in ALP levels over basal levels during in vitro osteogenic differentiation are predictive of in vivo performance.
    Stem Cell Research 12/2013; · 3.91 Impact Factor