Article

Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates.

Department of Civil and Environmental Engineering, Arizona State University, Box 5306, Tempe, Arizona 85287-5306, USA.
Environmental Science and Technology (Impact Factor: 5.48). 08/2007; 41(13):4640-6. DOI: 10.1021/es062529n
Source: PubMed

ABSTRACT Pulse radiolysis experiments were conducted on dissolved organic matter (DOM) samples isolated as hydrophobic and hydrophilic acids and neutrals from different sources (i.e., stream, lake, wastewater treatment plant). Absolute bimolecular reaction rate constants for the reaction of hydroxyl radicals (*OH) with DOM (k*(OH), DOM) were determined. k*(OH, DOM) values are expressed as moles of carbon. Based on direct measurement of transient DOM radicals (DOM*) and competition kinetic techniques, both using pulse radiolysis, the k*(OH, DOM) value for a standard fulvic acid from the Suwannee River purchased from the International Humic Substances Society was (1.60 +/- 0.24) x 10(8) M(-1) s(-1). Both pulse radiolysis methods yielded comparable k*(OH, DOM) values. The k*(OH, DOM) values for the seven DOM isolates from different sources ranged from 1.39 x 10(8) M(-1) s(-1) to 4.53 x 10(8) M(-1) s(-1), and averaged 2.23 x 108 M(-1) s(-1) (equivalent to 1.9 x 10(4) (mgC/L)(-1) s(-1)). These values represent the first direct measurements of k*(OH, DOM,) and they compare well with literature values obtained via competition kinetic techniques during ozone or ultraviolet irradiation experiments. More polar, lower-molecular-weight DOM isolates from wastewater have higher k*(OH, DOM) values. In addition, the formation (microsecond time scale) and decay (millisecond time scale) of DOM* transients were observed for the first time. DOM* from hydrophobic acids exhibited broader absorbance spectra than transphilic acids, while wastewater DOM isolates had narrower DOM* spectra more skewed toward shorter wavelengths than did DOM* spectra for hydrophobic acids.

1 Follower
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DOM is often utilized as a control parameter in the design of water treatment process as well as others such as water treatment efficiency and formation of disinfection byproducts (DBPs), of which removal and characterization have received wide attention. Fluorescence excitation–emission matrix spectroscopy (EEMs) for DOM characterization in flocculation process at present is not well known. It is for this reason that the EEMs in this study was employed to characterize the Missouri River DOM removal by the flocculation process. The results showed that four underlying components extracted from the EEMs of DOM by parallel factor (PARAFAC) were humic acid-like (A), fulvic acid-like (B), protein-like (C) and unidentified component (D), while the Missouri River DOM was dominated by A, B and C. Flocculation was effective for the hydrophobic organic compound A followed by the hydrophilic organic compounds B and C, whereas the smallest molecular size compound C was hard to treat. Further study illustrated that for flocculation at pH 7, higher DOC and THM removal efficiencies were obtained, and that the correlations of DOM components with DOC and THM removal efficiencies were significant, thus indicating that the EEMs-PARAFAC offers a robust analytical method for assessing DOM removal efficiency in the flocculation process.
    Desalination 08/2014; 346:38–45. DOI:10.1016/j.desal.2014.04.031 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extensive production and usage of antibiotics have led to an increasing occurrence of antibiotic residuals in various aquatic compartments, presenting a significant threat to both ecosystem and human health. This study investigated the degradation of selected β-lactam antibiotics (penicillins: ampicillin, penicillin V, and piperacillin; cephalosporin: cephalothin) by UV-254nm activated H2O2 and S2O8(2-) photochemical processes. The UV irradiation alone resulted in various degrees of direct photolysis of the antibiotics; while the addition of the oxidants improved significantly the removal efficiency. The steady-state radical concentrations were estimated, revealing a non-negligible contribution of hydroxyl radicals in the UV/S2O8(2-) system. Mineralization of the β-lactams could be achieved at high UV fluence, with a slow formation of SO4(2-) and a much lower elimination of total organic carbon (TOC). The transformation mechanisms were also investigated showing the main reaction pathways of hydroxylation (+16Da) at the aromatic ring and/or the sulfur atom, hydrolysis (+18Da) at the β-lactam ring and decarboxylation (-44Da) for the three penicillins. Oxidation of amine group was also observed for ampicillin. This study suggests that UV/H2O2 and UV/S2O8(2-) advanced oxidation processes (AOPs) are capable of degrading β-lactam antibiotics decreasing consequently the antibiotic activity of treated waters.
    Journal of Hazardous Materials 07/2014; 279C:375-383. DOI:10.1016/j.jhazmat.2014.07.008 · 4.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cylindrospermopsin (CYN) is a potent cyanobacterial toxin frequently found in water bodies worldwide raising concerns over the safety of drinking and recreational waters. A number of technologies have been investigated to remove and/or degrade cyanotoxins with advanced oxidation processes (AOPs) being among the most promising and effective for water detoxification. In this study, the degradation of CYN by sulfate radical-based UV-254 nm-AOPs was evaluated. The UV/S2O8(2-) (UV/peroxydisulfate) was more efficient than UV/HSO5(-) (UV/peroxysulfate) and UV/H2O2 (UV/hydrogen peroxide) processes when natural water samples were used as reaction matrices. The observed UV fluence based pseudo-first-order rate constants followed the expected order of radical quantum yields. The presence of 200 μM natural organic matter (NOM) as carbon slightly inhibited the destruction of CYN; 1.24 mg L(-1)NO3(-) (nitrate) had no significant influence on the removal efficiency and 50 μg L(-1) Fe(2+) [iron (2+)] or Cu(2+) [copper (2+)] improved the performance of UV/S2O8(2-). The addition of tert-butyl alcohol (t-BuOH; hydroxyl radical scavenger) in the reaction yielded byproducts that indicated specific sites in CYN preferentially attacked by sulfate radicals (SRs). The predominant CYN degradation byproduct was P448 consistent with fragmentation of the C5C6 bond of the uracil ring. The subsequent formation of P420 and P392 through a stepwise loss of carbonyl group(s) further supported the fragmentation pathway at C5C6. The byproduct P432 was identified exclusively as mono-hydroxylation of CYN at tricyclic guanidine ring, whereas P414 was detected as dehydrogenation at the tricyclic ring. The elimination of sulfate group and the opening of tricyclic ring were also observed. The possible degradation pathways of CYN by SR-AOP were presented.
    Water Research 06/2014; 63C:168-178. DOI:10.1016/j.watres.2014.06.004 · 5.32 Impact Factor