Article

Non-pharmaceutical public health interventions for pandemic influenza: an evaluation of the evidence base.

RAND Center for Domestic and International Health Security, 1776 Main Street, Santa Monica, California, USA.
BMC Public Health (Impact Factor: 2.32). 02/2007; 7:208. DOI: 10.1186/1471-2458-7-208
Source: PubMed

ABSTRACT In an influenza pandemic, the benefit of vaccines and antiviral medications will be constrained by limitations on supplies and effectiveness. Non-pharmaceutical public health interventions will therefore be vital in curtailing disease spread. However, the most comprehensive assessments of the literature to date recognize the generally poor quality of evidence on which to base non-pharmaceutical pandemic planning decisions. In light of the need to prepare for a possible pandemic despite concerns about the poor quality of the literature, combining available evidence with expert opinion about the relative merits of non-pharmaceutical interventions for pandemic influenza may lead to a more informed and widely accepted set of recommendations. We evaluated the evidence base for non-pharmaceutical public health interventions. Then, based on the collective evidence, we identified a set of recommendations for and against interventions that are specific to both the setting in which an intervention may be used and the pandemic phase, and which can be used by policymakers to prepare for a pandemic until scientific evidence can definitively respond to planners' needs.
Building on reviews of past pandemics and recent historical inquiries, we evaluated the relative merits of non-pharmaceutical interventions by combining available evidence from the literature with qualitative and quantitative expert opinion. Specifically, we reviewed the recent scientific literature regarding the prevention of human-to-human transmission of pandemic influenza, convened a meeting of experts from multiple disciplines, and elicited expert recommendation about the use of non-pharmaceutical public health interventions in a variety of settings (healthcare facilities; community-based institutions; private households) and pandemic phases (no pandemic; no US pandemic; early localized US pandemic; advanced US pandemic).
The literature contained a dearth of evidence on the efficacy or effectiveness of most non-pharmaceutical interventions for influenza. In an effort to inform decision-making in the absence of strong scientific evidence, the experts ultimately endorsed hand hygiene and respiratory etiquette, surveillance and case reporting, and rapid viral diagnosis in all settings and during all pandemic phases. They also encouraged patient and provider use of masks and other personal protective equipment as well as voluntary self-isolation of patients during all pandemic phases. Other non-pharmaceutical interventions including mask-use and other personal protective equipment for the general public, school and workplace closures early in an epidemic, and mandatory travel restrictions were rejected as likely to be ineffective, infeasible, or unacceptable to the public.
The demand for scientific evidence on non-pharmaceutical public health interventions for influenza is pervasive, and present policy recommendations must rely heavily on expert judgment. In the absence of a definitive science base, our assessment of the evidence identified areas for further investigation as well as non-pharmaceutical public health interventions that experts believe are likely to be beneficial, feasible and widely acceptable in an influenza pandemic.

0 Bookmarks
 · 
135 Views
  • Source
    Emerging Health Threats Journal 12/2011; 4:11702. DOI:10.3402/ehtj.v4i0.11702
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Remarkably little is known definitively about the modes of influenza transmission. Thus, important health policy and infection control issues remain unresolved. These shortcomings have been exposed in national and international pandemic preparedness activities over recent years. Indeed, WHO, CDC, ECDC and the U.S. Institute of Medicine have prioritised understanding the modes of influenza transmission as a critical need for pandemic planning. Studying influenza transmission is difficult; seasonality, unpredictable attack rates, role of environmental parameters such as temperature and humidity, numbers of participants required and confounding variables all present considerable obstacles to the execution of definitive studies. A range of investigations performed to date have failed to provide definitive answers and key questions remain. Reasons for this include the fact that many studies have not sought to investigate routes of transmission as a primary objective (instead, they have evaluated specific interventions) and that fieldwork in natural settings, specifically assessing the dynamics and determinants of transmission between humans, has been limited. The available evidence suggests that all routes of transmission (droplet, aerosol and contact) have a role to play; their relative significance will depend on the set of circumstances acting at a given time. Dictating the process are factors related to the virus itself, the host and the environment.
    Influenza and Other Respiratory Viruses 09/2013; 7(s2). DOI:10.1111/irv.12080 · 1.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: School closure is a potential intervention during an influenza pandemic and has been investigated in many modelling studies. To systematically review the effects of school closure on influenza outbreaks as predicted by simulation studies. We searched Medline and Embase for relevant modelling studies published by the end of October 2012, and handsearched key journals. We summarised the predicted effects of school closure on the peak and cumulative attack rates and the duration of the epidemic. We investigated how these predictions depended on the basic reproduction number, the timing and duration of closure and the assumed effects of school closures on contact patterns. School closures were usually predicted to be most effective if they caused large reductions in contact, if transmissibility was low (e.g. a basic reproduction number <2), and if attack rates were higher in children than in adults. The cumulative attack rate was expected to change less than the peak, but quantitative predictions varied (e.g. reductions in the peak were frequently 20-60% but some studies predicted >90% reductions or even increases under certain assumptions). This partly reflected differences in model assumptions, such as those regarding population contact patterns. Simulation studies suggest that school closure can be a useful control measure during an influenza pandemic, particularly for reducing peak demand on health services. However, it is difficult to accurately quantify the likely benefits. Further studies of the effects of reactive school closures on contact patterns are needed to improve the accuracy of model predictions.
    PLoS ONE 05/2014; 9(5):e97297. DOI:10.1371/journal.pone.0097297 · 3.53 Impact Factor

Full-text (2 Sources)

Download
51 Downloads
Available from
May 30, 2014