Article

Functional effects of protein sequence polymorphisms in the organic cation/ergothioneine transporter OCTN1 (SLC22A4).

Departments of aBiopharmaceutical Sciences, University of California San Francisco, San Francisco, California, USA.
Pharmacogenetics and Genomics (Impact Factor: 3.45). 10/2007; 17(9):773-82. DOI: 10.1097/FPC.0b013e3281c6d08e.
Source: PubMed

ABSTRACT OCTN1 is a multispecific transporter of organic cations and zwitterions, including several clinically important drugs as well as the antioxidant ergothioneine. OCTN1 is highly expressed in the kidney, where it is thought to aid in active secretion of organic cations, and may facilitate the active reabsorption of ergothioneine. Genetic variation in OCTN1 may help to explain interindividual variability in the pharmacokinetics of many cationic or zwitterionic drugs.
We screened for human genetic variants in the OCTN1 coding region by direct sequencing in a large sample (n=270) of ethnically diverse healthy volunteers.
Six protein sequence-altering variants were identified, including five-amino-acid substitutions and one nonsense mutation. Two of the variants, T306I and L503F, were polymorphic, occurring at frequencies of 37 and 19%, respectively, in the total sample. Allele frequencies are varied by ethnicity. In biochemical assays, two of the variants (D165G and R282X) resulted in complete loss of transport function, and one variant (M205I) caused a reduction in activity to approximately 50% of the reference sequence protein. One variant, L503F, showed altered substrate specificity; this variant occurred at particularly high allele frequency (42%) in the European-American participants in our sample. Subcellular localization and ergothioneine inhibition kinetics were similar among the common amino-acid sequence variants of OCTN1.
The common OCTN1-L503F variant may explain a significant amount of population variation in the pharmacokinetics of OCTN1 substrate drugs. The rare loss-of-function variants provide a rational tool for studying the importance of ergothioneine in humans in vivo.

0 Bookmarks
 · 
132 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Impaired L-carnitine uptake correlates with higher blood pressure in adult men, and L-carnitine restores endothelial function in aortic rings from spontaneously hypertensive rat (SHR). Thus, endothelial dysfunction in hypertension could result from lower L-carnitine transport in this cell type. L-Carnitine transport is mainly mediated by novel organic cation transporters 1 (Octn1, Na(+)-independent) and 2 (Octn2, Na(+)-dependent); however, their kinetic properties and potential consequences in hypertension are unknown. We hypothesize that L-carnitine transport kinetic properties will be altered in aortic endothelium from spontaneously hypertensive rats (SHR). L-Carnitine transport was measured at different extracellular pH (pHo 5.5-8.5) in the absence or presence of sodium in rat aortic endothelial cells (RAECs) from non-hypertensive Wistar-Kyoto (WKY) rats and SHR. Octn1 and Octn2 mRNA relative expression was also determined. Dilation of endothelium-intact or denuded aortic rings in response to calcitonine gene related peptide (CGRP, 0.1-100 nmol/L) was measured (myography) in the absence or presence of L-carnitine. Total L-carnitine transport was lower in cells from SHR compared with WKY rats, an effect due to reduced Na(+)-dependent (Na(+) dep ) compared with Na(+)-independent (Na(+) indep ) transport components. Saturable L-carnitine transport kinetics show maximal velocity (V max), without changes in apparent K m for Na(+) indep transport in SHR compared with WKY rats. Total and Na(+) dep component of transport were increased, but Na(+) indep transport was reduced by extracellular alkalization in WKY rats. However, alkalization reduced total and Na(+) indep transport in cells from SHR. Octn2 mRNA was higher than Octn-1 mRNA expression in cells from both conditions. Dilation of artery rings in response to CGRP was reduced in vessels from SHR compared with WKY rats. CGRP effect was endothelium-dependent and restored by L-carnitine. All together these results suggest that reduced L-carnitine transport (likely via Na(+)-dependent Octn2) could limit this compound's potential beneficial effects in RAECs from SHR.
    PLoS ONE 02/2014; 9(2):e90339. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the effects of genetic polymorphisms in organic cation transporter (OCT) genes, such as OCT1-3, OCTN1, MATE1, and MATE2-K, on metformin pharmacokinetics. Of particular interest was the influence of genetic polymorphisms as covariates on the variability in the population pharmacokinetics (PPK) of metformin using nonlinear mixed effects modeling (NONMEM). In a retrospective data analysis, data on subjects from five independent metformin bioequivalence studies that used the same protocol were assembled and compared with 96 healthy control subjects who were administered a single oral 500 mg dose of metformin. Genetic polymorphisms of OCT2-808 G > T and OCTN1-917C > T had a significant (P < 0.05) effect on metformin pharmacokinetics, yielding a higher peak concentration with a larger area under the serum time-concentration curve. The values obtained were 102 ± 34.5 L/h for apparent oral clearance (CL/F), 447 ± 214 L for volume of distribution (V (d)/F), and 3.1 ± 0.9 h for terminal half-life (mean ± SD) by non-compartmental analysis. The NONMEM method gives similar results. The metformin serum levels were obtained by setting the one-compartment model to a first-order absorption and lag time. In the PPK model, the effects of OCT2-808 G > T and OCTN1-917C > T variants on the CL/F were significant (P < 0.001 and P < 0.05, respectively). Thus, genetic variants of OCTN1-917C > T, along with OCT2-808 G > T genetic polymorphisms, could be useful in titrating the optimal metformin dose.
    The AAPS Journal 02/2013; · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The SLC22 family contains 13 functionally characterized human plasma membrane proteins each with 12 predicted α-helical transmembrane domains. The family comprises organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). The transporters operate as (1) uniporters which mediate facilitated diffusion (OCTs, OCTNs), (2) anion exchangers (OATs), and (3) Na(+)/zwitterion cotransporters (OCTNs). They participate in small intestinal absorption and hepatic and renal excretion of drugs, xenobiotics and endogenous compounds and perform homeostatic functions in brain and heart. Important endogeneous substrates include monoamine neurotransmitters, l-carnitine, α-ketoglutarate, cAMP, cGMP, prostaglandins, and urate. It has been shown that mutations of the SLC22 genes encoding these transporters cause specific diseases like primary systemic carnitine deficiency and idiopathic renal hypouricemia and are correlated with diseases such as Crohn's disease and gout. Drug-drug interactions at individual transporters may change pharmacokinetics and toxicities of drugs.
    Molecular Aspects of Medicine 04/2013; 34(2-3):413-435. · 10.30 Impact Factor