Article

Amyloid fibril formation by human stefin B: influence of pH and TFE on fibril growth and morphology.

Department of Biochemistry, Molecular and Structural Biology, Josef Stefan Institute, Ljubljana, Slovenia.
Amyloid (Impact Factor: 4.44). 10/2007; 14(3):237-47. DOI: 10.1080/13506120701461137
Source: PubMed

ABSTRACT As shown before, human stefin B (cystatin B) populates two partly unfolded species, a native-like state at pH 4.8 and a structured molten globule state at pH 3.3 (high ionic strength), from each of which amyloid fibrils grow. Here, we show that the fibrils obtained at pH 3.3 differ from those at pH 4.8 and that those obtained at pH 3.3 (protofibrils) do not transform readily to mature fibrils. In addition we show that amorphous aggregates are also a source of fibrils. The kinetics of amyloid fibril formation at different trifluoroethanol (TFE) concentrations were measured. TFE accelerates fibril growth at predenaturational concentrations of the alcohol. At concentrations higher than 10%, the fibrillar yield decreases proportionately as the population of an all alpha-helical, denatured form of the protein increases. At an optimum TFE concentration, the lag and the growth phases are observed, similarly to some other amyloidogenic proteins. Morphology of the protein species at the beginning and the end of the reactions was observed using atomic force microscopy and transmission electron microscopy. Final fibril morphologies differ depending on solvent conditions.

0 Bookmarks
 · 
203 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: EPM1 is a rare progressive myoclonus epilepsy accompanied by apoptosis in the cerebellum of patients. Mutations in the gene of stefin B (cystatin B) are responsible for the primary defect underlying EPM1. Taking stefin B aggregates as a model we asked what comes first, protein aggregation or oxidative stress and how these two processes correlate with cell death. We studied the aggregation in cells of the stefin B wild type, G4R mutant, and R68X fragment before (Ceru et al., 2010, Biol. Cell). The present study was performed on two more missense mutants of human stefin B, G50E and Q71P and they similarly showed numerous aggregates upon over expression. Mutant- and oligomer-dependent increase in oxidative stress and cell death in cells bearing aggregates was shown. On the other hand, there was no correlation between the size and number of the aggregates and cell death. We suggest that differences in toxicity of the aggregates depend on whether they are in oligomeric/protofibrillar or fibrillar form. This in turn likely depends on the mutant's 3D structure where unfolded proteins show lower toxicity. Imaging by transmission electron microscopy showed that the aggregates in cells are of different types: bigger perinuclear, surrounded by membranes and sometimes showing vesicle-like invaginations, or smaller, punctual and dispersed throughout the cytoplasm. All EPM1 mutants studied were inactive as cysteine proteases inhibitors and in this way contribute to loss of stefin B functions. Relevance to EPM1 disease by gain in toxic function is discussed.
    Biochimica et biophysica acta. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aggregation of protein into insoluble intracellular complexes and inclusion bodies underlies the pathogenesis of human neurodegenerative diseases. Importance of cytochrome c (cyt c) arises from its involvement in apoptosis, sequence homology and for studying molecular evolution. A systemic investigation of polyethylene glycol (PEG) and trifluoroethanol (TFE) on the conformational stability of cyt c as a model hemeprotein was made using multi-methodological approach. Cyt c exists as molten globule (MG) at 60 % PEG-400 and 40 % TFE as confirmed by far-UV CD, attenuated total reflection Fourier transform infrared spectroscopy, Trp environment, 8-anilino-1-naphthalene-sulfonic acid (ANS) binding and blue shift in the soret band. Q-band splitting in MG states specifies conformational changes in the hydrophobic heme-binding pocket. Aggregates were detected at 90 % PEG-400 and 50 % TFE as confirmed by increase thioflavin T and ANS fluorescence and shift in Congo red absorbance. Detection of prefibrils and protofibrils at 90 % PEG-400 and 50 % TFE was possible after 72-h incubation. Single cell gel electrophoresis of prefibrils and protofibrils showed DNA damage confirming their toxicity and potential health hazards. Scanning electron microscopy and XRD analysis confirmed prefibrillar oligomers and protofibrils of cyt c.
    Amino Acids 04/2014; · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Figure optionsDownload full-size imageDownload high-quality image (140 K)Download as PowerPoint slide
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 01/2014; · 4.81 Impact Factor

Full-text (3 Sources)

View
120 Downloads
Available from
Jul 9, 2014